zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 10.

Preprints

Zang, J.; Klemm, S.; Pain, C.; Duckney, P.; Bao, Z.; Stamm, G.; Kriechbaumer, V.; Bürstenbinder, K.; Hussey, P. J.; Wang, P.; A Novel Plant Actin-Microtubule Bridging Complex Regulates Cytoskeletal and ER Structure at Endoplasmic Reticulum-Plasma Membrane Contact Sites (EPCS) SSRN Electronic Journal (2020) DOI: 10.2139/ssrn.3581370

In plants, the cortical ER network is connected to the plasma membrane through the ER-PM contact sites (EPCS), whose structures are maintained by EPCS resident proteins and the cytoskeleton. Strong co-alignment between EPCS and the cytoskeleton is observed in plants, but little is known of how the cytoskeleton is maintained and regulated at the EPCS. Here we have used a yeast-two-hybrid screen and subsequent in vivo interaction studies in plants by FRET-FLIM analysis, to identify two microtubule binding proteins, KLCR1 (Kinesin Light Chain Related protein 1) and IQD2 (IQ67-Domain 2) that interact with the actin binding protein NET3C and form a component of plant EPCS, that mediates the link between the actin and microtubule networks. The NET3C-KLCR1-IQD2 module, acting as an actin-microtubule bridging complex, has a direct influence on ER morphology. Their loss of function mutants, net3a/NET3C RNAi, 0klcr1 or iqd2, exhibit defects in pavement cell morphology which we suggest is linked to the disorganization of both actin filaments and microtubules. In conclusion, our results reveal a novel cytoskeletal associated complex, which is essential for the maintenance and organization of both cytoskeletal structure and ER morphology at the EPCS, and for normal plant cell morphogenesis.
Preprints

Stephani, M.; Picchianti, L.; Gajic, A.; Beveridge, R.; Skarwan, E.; Sanchez de Medina Hernandez, V.; Mohseni, A.; Clavel, M.; Zeng, Y.; Naumann, C.; Matuszkiewicz, M.; Turco, E.; Loefke, C.; Li, B.; Durnberger, G.; Schutzbier, M.; Chen, H. T.; Abdrakhmanov, A.; Savova, A.; Chia, K.-S.; Djamei, A.; Schaffner, I.; Abel, S.; Jiang, L.; Mechtler, K.; Ikeda, F.; Martens, S.; Clausen, T.; Dagdas, Y.; A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress bioRxiv (2020) DOI: 10.1101/2020.03.18.995316

Eukaryotes have evolved various quality control mechanisms to promote proteostasis in the ER. Selective removal of certain ER domains via autophagy (termed as ER-phagy) has emerged as a major quality control mechanism. However, the degree to which ER-phagy is employed by other branches of ER-quality control remains largely elusive. Here, we identify a cytosolic protein, C53, that is specifically recruited to autophagosomes during ER-stress, in both plant and mammalian cells. C53 interacts with ATG8 via a distinct binding epitope, featuring a shuffled ATG8 interacting motif (sAIM). C53 senses proteotoxic stress in the ER lumen by forming a tripartite receptor complex with the ER-associated ufmylation ligase UFL1 and its membrane adaptor DDRGK1. The C53/UFL1/DDRGK1 receptor complex is activated by stalled ribosomes and induces the degradation of internal or passenger proteins in the ER. Consistently, the C53 receptor complex and ufmylation mutants are highly susceptible to ER stress. Thus, C53 forms an ancient quality control pathway that bridges selective autophagy with ribosome-associated quality control at the ER.
Preprints

Bassal, M.; Majovsky, P.; Thieme, D.; Herr, T.; Abukhalaf, M.; Ayash, M.; Al Shweiki, M. R.; Proksch, C.; Hmedat, A.; Ziegler, J.; Neumann, S.; Hoehenwarter, W.; Reshaping of the Arabidopsis thaliana proteome landscape and co-regulation of proteins in development and immunity bioRxiv (2020) DOI: 10.1101/2020.03.09.978627

Proteome remodeling is a fundamental adaptive response and proteins in complex and functionally related proteins are often co-expressed. Using a deep sampling strategy we define Arabidopsis thaliana tissue core proteomes at around 10,000 proteins per tissue and absolutely quantify (copy numbers per cell) nearly 16,000 proteins throughout the plant lifecycle. A proteome wide survey of global post translational modification revealed amino acid exchanges pointing to potential conservation of translational infidelity in eukaryotes. Correlation analysis of protein abundance uncovered potentially new tissue and age specific roles of entire signaling modules regulating transcription in photosynthesis, seed development and senescence and abscission. Among others, the data suggest a potential function of RD26 and other NAC transcription factors in seed development related to desiccation tolerance as well as a possible function of Cysteine-rich Receptor-like Kinases (CRKs) as ROS sensors in senescence. All of the components of ribosome biogenesis factor (RBF) complexes were co-expressed tissue and age specifically indicating functional promiscuity in the assembly of these little described protein complexes in Arabidopsis. Treatment of seedlings with flg22 for 16 hours allowed us to characterize proteome architecture in basal immunity in detail. The results were complemented with parallel reaction monitoring (PRM) targeted proteomics, phytohormone, amino acid and transcript measurements. We obtained strong evidence of suppression of jasmonate (JA) and JA-Ile levels by deconjugation and hydroxylation via IAA-ALA RESISTANT3 (IAR3) and JASMONATE-INDUCED OXYGENASE 2 (JOX2) under the control of JASMONATE INSENSITIVE 1 (MYC2). This previously unknown regulatory switch is another part of the puzzle of the as yet understudied role of JA in pattern triggered immunity. The extensive coverage of the Arabidopsis proteome in various biological scenarios presents a rich resource to plant biologists that we make available to the community.
Publikation

Bassal, M.; Abukhalaf, M.; Majovsky, P.; Thieme, D.; Herr, T.; Ayash, M.; Tabassum, N.; Al Shweiki, M. R.; Proksch, C.; Hmedat, A.; Ziegler, J.; Lee, J.; Neumann, S.; Hoehenwarter, W.; Reshaping of the Arabidopsis thaliana Proteome Landscape and Co-regulation of Proteins in Development and Immunity Mol. Plant 13, 1709-1732, (2020) DOI: 10.1016/j.molp.2020.09.024

Proteome remodeling is a fundamental adaptive response, and proteins in complexes and functionally related proteins are often co-expressed. Using a deep sampling strategy we define core proteomes of Arabidopsis thaliana tissues with around 10 000 proteins per tissue, and absolutely quantify (copy numbers per cell) nearly 16 000 proteins throughout the plant lifecycle. A proteome-wide survey of global post-translational modification revealed amino acid exchanges pointing to potential conservation of translational infidelity in eukaryotes. Correlation analysis of protein abundance uncovered potentially new tissue- and age-specific roles of entire signaling modules regulating transcription in photosynthesis, seed development, and senescence and abscission. Among others, the data suggest a potential function of RD26 and other NAC transcription factors in seed development related to desiccation tolerance as well as a possible function of cysteine-rich receptor-like kinases (CRKs) as ROS sensors in senescence. All of the components of ribosome biogenesis factor (RBF) complexes were found to be co-expressed in a tissue- and age-specific manner, indicating functional promiscuity in the assembly of these less-studied protein complexes in Arabidopsis. Furthermore, we characterized detailed proteome remodeling in basal immunity by treating Arabidopsis seeldings with flg22. Through simultaneously monitoring phytohormone and transcript changes upon flg22 treatment, we obtained strong evidence of suppression of jasmonate (JA) and JA-isoleucine (JA-Ile) levels by deconjugation and hydroxylation by IAA-ALA RESISTANT3 (IAR3) and JASMONATE-INDUCED OXYGENASE 2 (JOX2), respectively, under the control of JASMONATE INSENSITIVE 1 (MYC2), suggesting an unrecognized role of a new JA regulatory switch in pattern-triggered immunity. Taken together, the datasets generated in this study present extensive coverage of the Arabidopsis proteome in various biological scenarios, providing a rich resource available to the whole plant science community.
Publikation

Wasternack, C.; Sulfation switch in the shade Nat. Plants 6, 186-187, (2020) DOI: 10.1038/s41477-020-0620-8

Plants adjust the balance between growth and defence using photoreceptors and jasmonates. Levels of active jasmonates are reduced in a phytochrome B-dependent manner by upregulation of a 12-hydroxyjasmonate sulfotransferase, leading to increase in shade avoidance and decrease in defence.
Publikation

Wasternack, C.; Determination of sex by jasmonate J. Integr. Plant Biol. 62, 162-164, (2020) DOI: 10.1111/jipb.12840

0
Publikation

Stephani, M.; Picchianti, L.; Gajic, A.; Beveridge, R.; Skarwan, E.; Sanchez de Medina Hernandez, V.; Mohseni, A.; Clavel, M.; Zeng, Y.; Naumann, C.; Matuszkiewicz, M.; Turco, E.; Loefke, C.; Li, B.; Durnberger, G.; Schutzbier, M.; Chen, H. T.; Abdrakhmanov, A.; Savova, A.; Chia, K.-S.; Djamei, A.; Schaffner, I.; Abel, S.; Jiang, L.; Mechtler, K.; Ikeda, F.; Martens, S.; Clausen, T.; Dagdas, Y.; A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress eLife 9, e58396, (2020) DOI: 10.7554/elife.58396

Eukaryotes have evolved various quality control mechanisms to promote proteostasis in the endoplasmic reticulum (ER). Selective removal of certain ER domains via autophagy (termed as ER-phagy) has emerged as a major quality control mechanism. However, the degree to which ER-phagy is employed by other branches of ER-quality control remains largely elusive. Here, we identify a cytosolic protein, C53, that is specifically recruited to autophagosomes during ER-stress, in both plant and mammalian cells. C53 interacts with ATG8 via a distinct binding epitope, featuring a shuffled ATG8 interacting motif (sAIM). C53 senses proteotoxic stress in the ER lumen by forming a tripartite receptor complex with the ER-associated ufmylation ligase UFL1 and its membrane adaptor DDRGK1. The C53/UFL1/DDRGK1 receptor complex is activated by stalled ribosomes and induces the degradation of internal or passenger proteins in the ER. Consistently, the C53 receptor complex and ufmylation mutants are highly susceptible to ER stress. Thus, C53 forms an ancient quality control pathway that bridges selective autophagy with ribosome-associated quality control in the ER.
Publikation

Feussner, I.; Kühn, H.; Wasternack, C.; Lipoxygenase-dependent degradation of storage lipids Trends Plant Sci. 6, 268-273, (2001) DOI: 10.1016/S1360-1385(01)01950-1

Oilseed germination is characterized by the mobilization of storage lipids as a carbon source for the germinating seedling. In spite of the importance of lipid mobilization, its mechanism is only partially understood. Recent data suggest that a novel degradation mechanism is initiated by a 13-lipoxygenase during germination, using esterified fatty acids specifically as substrates. This 13-lipoxygenase reaction leads to a transient accumulation of ester lipid hydroperoxides in the storage lipids, and the corresponding oxygenated fatty acid moieties are preferentially removed by specific lipases. The free hydroperoxy fatty acids are subsequently reduced to their hydroxy derivatives, which might in turn undergo β-oxidation.
Publikation

BERGER, S.; Weichert, H.; Porzel, A.; Wasternack, C.; Kühn, H.; Feussner, I.; Enzymatic and non-enzymatic lipid peroxidation in leaf development BBA-Mol. Cell Biol. Lipids 1533, 266-276, (2001) DOI: 10.1016/S1388-1981(01)00161-5

Enzymatic and non-enzymatic lipid peroxidation has been implicated in programmed cell death, which is a major process of leaf senescence. To test this hypothesis we developed a high-performance liquid chromatography (HPLC) method for a simultaneous analysis of the major hydro(pero)xy polyenoic fatty acids. Quantities of lipid peroxidation products in leaves of different stages of development including natural senescence indicated a strong increase in the level of oxygenated polyenoic fatty acids (PUFAs) during the late stages of leaf senescence. Comprehensive structural elucidation of the oxygenation products by means of HPLC, gas chromatography/mass spectrometry and 1H nuclear magnetic resonance suggested a non-enzymatic origin. However, in some cases a small share of specifically oxidized PUFAs was identified suggesting involvement of lipid peroxidizing enzymes. To inspect the possible role of enzymatic lipid peroxidation in leaf senescence, we analyzed the abundance of lipoxygenases (LOXs) in rosette leaves of Arabidopsis. LOXs and their product (9Z,11E,13S,15Z)-13-hydroperoxy-9,11,15-octadecatrienoic acid were exclusively detected in young green leaves. In contrast, in senescing leaves the specific LOX products were overlaid by large amounts of stereo-random lipid peroxidation products originating from non-enzymatic oxidation. These data indicate a limited contribution of LOXs to total lipid peroxidation, and a dominant role of non-enzymatic lipid peroxidation in late stages of leaf development.
Publikation

Weichert, H.; Kohlmann, M.; Wasternack, C.; Feussner, I.; Metabolic profiling of oxylipins upon sorbitol treatment in barley leaves Biochem. Soc. Trans. 28, 861-862, (2001) DOI: 10.1042/bst0280861

In barley leaves 13-lipoxygenases (LOXs) are induced by salicylate and jasmonate. Here, we analyse by metabolic profiling the accumulation of oxylipins upon sorbitol treatment. Although 13-LOX-derived products are formed and specifically directed into the reductase branch of the LOX pathway, accumulation is much later than in the cases of salicylate and jasmonate treatment. In addition, under these conditions only the accumulation of jasmonates as additional products of the LOX pathway has been found.
IPB Mainnav Search