zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 3 von 3.


Jablonická, V.; Ziegler, J.; Vatehová, Z.; Lišková, D.; Heilmann, I.; Obložinský, M.; Heilmann, M.; Inhibition of phospholipases influences the metabolism of wound-induced benzylisoquinoline alkaloids in Papaver somniferum L. J. Plant Physiol. 223, 1-8, (2018) DOI: 10.1016/j.jplph.2018.01.007

Benzylisoquinoline alkaloids (BIAs) are important secondary plant metabolites and include medicinally relevant drugs, such as morphine or codeine. As the de novo synthesis of BIA backbones is (still) unfeasible, to date the opium poppy plant Papaver somniferum L. represents the main source of BIAs. The formation of BIAs is induced in poppy plants by stress conditions, such as wounding or salt treatment; however, the details about regulatory processes controlling BIA formation in opium poppy are not well studied. Environmental stresses, such as wounding or salinization, are transduced in plants by phospholipid-based signaling pathways, which involve different classes of phospholipases. Here we investigate whether pharmacological inhibition of phospholipase A2 (PLA2, inhibited by aristolochic acid (AA)) or phospholipase D (PLD; inhibited by 5-fluoro-2-indolyl des-chlorohalopemide (FIPI)) in poppy plants influences wound-induced BIA accumulation and the expression of key biosynthetic genes. We show that inhibition of PLA2 results in increased morphinan biosynthesis concomitant with reduced production of BIAs of the papaverine branch, whereas inhibition of PLD results in increased production of BIAs of the noscapine branch. The data suggest that phospholipid-dependent signaling pathways contribute to the activation of morphine biosynthesis at the expense of the production of other BIAs in poppy plants. A better understanding of the effectors and the principles of regulation of alkaloid biosynthesis might be the basis for the future genetic modification of opium poppy to optimize BIA production.

Hause, B.; Vörös, K.; Kogel, K.-H.; Besser, K.; Wasternack, C.; A Jasmonate-responsive Lipoxygenase of Barley Leaves is Induced by Plant Activators but not by Pathogens J. Plant Physiol. 154, 459-462, (1999) DOI: 10.1016/S0176-1617(99)80283-1

Using the recently isolated eDNA clone LOX2 : Hv : 1 which codes for the most abundant jasmonateinducible lipoxygenase (LOX) in barley leaves (Vörös et al., 1998), we analysed the capability of different activators of systemic activated resistance (SAR) to induce the expression of that LOX. Upon treatment of barley leaves with salicylate, 2,6-dichloroisonicotinic acid and benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester, all these compounds were able to induce the expression of the LOX2 : Hv : 1 gene, whereas upon infection with the powdery mildew fungus (Blumeria graminis f. sp. hordei) mRNA accumulation was not detectable in compatible or in incompatible interactions. The induction of the LOX2 : Hv : 1 protein by SAR activators and the expression of different sets of genes induced by jasmonate and salicylate, respectively, are discussed in relation to defense responses against pathogenic fungi.

Hause, B.; Kogel, K.-H.; Parthier, B.; Wasternack, C.; In barley leaf cells, jasmonates do not act as a signal during compatible or incompatible interactions with the powdery mildew fungus (Erysiphe graminis f. sp. hordei) J. Plant Physiol. 150, 127-132, (1997) DOI: 10.1016/S0176-1617(97)80191-5

We have studied a possible function of jasmonates as mediators in the host-pathogen interaction of barley (Hordeum vulgare L.) with the powdery mildew fungus Egh (Erysiphe graminis f. sp. hordei). Previous findings from whole-leaf extracts demonstrated that (i) extracts from infected barley leaves did not contain enhanced levels of jasmonates, (ii) transcripts of jasmonate-inducible genes were not expressed upon infection, and (iii) exogenous application of jasmonates did not induce resistance to Egh (Kogel et al., 1995). Nevertheless, the question arises whether or not jasmonates are involved in the interaction of barley with the powdery mildew fungus at the local site of infection. Using an immunocytological approach the analysis of leaf cross-sections from a susceptible barley cultivar and its near-isogenic mlo5-resistant line revealed no accumulation of JIP-23, the most abundant jasmonate inducible protein, neither in epidermal cells attacked by the pathogen nor in adjacent mesophyll cells. As a positive control, cross-sections from methyl jasmonate-treated leaf segments showed a strong signal for JIP-23 accumulation. Because the presence of the jasmonate-inducible protein is highly indicative for an already low threshold level of endogenous jasmonate (Lehmann et al., 1995), the lack of JIP-23 accumulation at the sites of attempted fungal infection clearly demonstrates the absence of enhanced levels of jasmonates. This excludes even a local rise of jasmonate confined to those single cells penetrated (Mlo genotype) or attacked (mlo5 genotype) by the fungus.
IPB Mainnav Search