zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 5 von 5.

Publikation

Wasternack, C.; Hause, B. OPDA-Ile – a new JA-Ile-independent signal? Plant Signal Behav 11, e125364600, (2016) DOI: 10.1080/15592324.2016.1253646

AbstractExpression takes place for most of the jasmonic acid (JA)-induced genes in a COI1- dependent manner via perception of its conjugate JA-Ile in the SCFCOI1-JAZ co-receptor complex. There are, however, numerous genes and processes, which are preferentially induced COI1-independently by the precursor of JA, 12-oxo-phytodienoic acid (OPDA). After recent identification of the Ile-conjugate of OPDA, OPDA-Ile, biological activity of this compound could be unequivocally proven in terms of gene expression. Any interference of OPDA, JA, or JA-Ile in OPDA-Ile-induced gene expression could be excluded by using different genetic background. The data suggest individual signaling properties of OPDA-Ile. Future studies for analysis of an SCFCOI1-JAZ co-receptor-independent route of signaling are proposed.
Publikation

Wasternack, C.; Goetz, S.; Hellwege, A.; Forner, S.; Strnad, M.; Hause, B. Another JA/COI1-independent role of OPDA detected in tomato embryo development. Plant Signal Behav 7, 1349-1353, (2012) DOI: 10.4161/psb.21551

Jasmonates (JAs) are ubiquitously occurring signaling compounds in plants formed in response to biotic and abiotic stress as well as in development. (+)-7-iso-jasmonoyl isoleucine, the bioactive JA, is involved in most JA-dependent processes mediated by the F-box protein COI1 in a proteasome-dependent manner. However, there is an increasing number of examples, where the precursor of JA biosynthesis, cis-(+)-12-oxophytodienoic acid (OPDA) is active in a JA/COI1-independent manner. Here, we discuss those OPDA-dependent processes, thereby giving emphasis on tomato embryo development. Recent data on seed coat-generated OPDA and its role in embryo development is discussed based on biochemical and genetic evidences.
Publikation

Wasternack, C.; Xie, D. The genuine ligand of a jasmonic acid receptor: Improved analysis of jasmonates is now required. Plant Signal Behav 5, 337-340, (2010) DOI: 10.4161/psb.5.4.11574

Jasmonic acid (JA), its metabolites, such as the methyl ester or amino acid conjugates as well as its precursor 12-oxophytodienoic acid (OPDA) are lipid-derived signals. JA, OPDA and JA-amino acid conjugates are known to function as signals in plant stress responses and development. More recently, formation of JA-amino acid conjugates and high biological activity of JA-Isoleucine (JA-Ile) were found to be essential in JA signaling. A breakthrough was the identification of JAZ proteins which interact with the F-box protein COI1 if JA-Ile is bound. This interaction leads to proteasomal degradation of JAZs being negative regulators of JA-induced transcription. Surprisingly, a distinct stereoisomer of JA-Ile, the (+)-7-iso-JA-Ile [(3R,7S) form] is most active. Coronatine, a bacterial phytotoxine with an identical stereochemistry at the cyclopentanone ring, has a similar bioactivity. This was explained by the recent identification of COI1 as the JA receptor and accords well with molecular modeling studies. Whereas over the last two decades JA was quantified to describe any JA dependent process, now we have to take into account a distinct stereoisomer of JA-Ile. Until recently a quantitative analysis of (+)-7-iso-JA-Ile was missing presumable due to its equilibration to (−)-JA-Ile. Now such an analysis was achieved. These aspects will be discussed based on our new knowledge on JA perception and signaling.
Publikation

Hause, B.; Kogel, K.-H.; Parthier, B.; Wasternack, C. In barley leaf cells, jasmonates do not act as a signal during compatible or incompatible interactions with the powdery mildew fungus (<i>Erysiphe graminis</i> f. sp. <i>hordei</i>) J. Plant Physiol. 150, 127-132, (1997) DOI: 10.1016/S0176-1617(97)80191-5

We have studied a possible function of jasmonates as mediators in the host-pathogen interaction of barley (Hordeum vulgare L.) with the powdery mildew fungus Egh (Erysiphe graminis f. sp. hordei). Previous findings from whole-leaf extracts demonstrated that (i) extracts from infected barley leaves did not contain enhanced levels of jasmonates, (ii) transcripts of jasmonate-inducible genes were not expressed upon infection, and (iii) exogenous application of jasmonates did not induce resistance to Egh (Kogel et al., 1995). Nevertheless, the question arises whether or not jasmonates are involved in the interaction of barley with the powdery mildew fungus at the local site of infection. Using an immunocytological approach the analysis of leaf cross-sections from a susceptible barley cultivar and its near-isogenic mlo5-resistant line revealed no accumulation of JIP-23, the most abundant jasmonate inducible protein, neither in epidermal cells attacked by the pathogen nor in adjacent mesophyll cells. As a positive control, cross-sections from methyl jasmonate-treated leaf segments showed a strong signal for JIP-23 accumulation. Because the presence of the jasmonate-inducible protein is highly indicative for an already low threshold level of endogenous jasmonate (Lehmann et al., 1995), the lack of JIP-23 accumulation at the sites of attempted fungal infection clearly demonstrates the absence of enhanced levels of jasmonates. This excludes even a local rise of jasmonate confined to those single cells penetrated (Mlo genotype) or attacked (mlo5 genotype) by the fungus.
Publikation

Wasternack, C.; Atzorn, R.; Pena-Cortes, H.; Parthier, B. Alteration of gene expression by jasmonate and ABA in tobacco and tomato J. Plant Physiol. 147, 503-510, (1996)

0
IPB Mainnav Search