zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 12.

Publikation

Ziegler, J.; Qwegwer, J.; Schubert, M.; Erickson, J. L.; Schattat, M.; Bürstenbinder, K.; Grubb, C. D.; Abel, S.; Simultaneous analysis of apolar phytohormones and 1-aminocyclopropan-1-carboxylic acid by high performance liquid chromatography/electrospray negative ion tandem mass spectrometry via 9-fluorenylmethoxycarbonyl chloride derivatization J. Chromatogr. A 1362, 102-109, (2014) DOI: 10.1016/j.chroma.2014.08.029

A strategy to detect and quantify the polar ethylene precursor 1-aminocyclopropan-1-carboxylic acid (ACC) along with the more apolar phytohormones abscisic acid (ABA), indole-3-acetic acid (IAA), jasmonic acid (JA), jasmonic acid-isoleucine conjugate (JA-Ile), 12-oxo-phytodienoic acid (OPDA), trans-zeatin, and trans-zeatin 9-riboside using a single extraction is presented. Solid phase resins commonly employed for extraction of phytohormones do not allow the recovery of ACC. We circumvent this problem by attaching an apolar group to ACC via derivatization with the amino group specific reagent 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl). Derivatization in the methanolic crude extract does not modify other phytohormones. The derivatized ACC could be purified and detected together with the more apolar phytohormones using common solid phase extraction resins and reverse phase HPLC/electrospray negative ion tandem mass spectrometry. The limit of detection was in the low nanomolar range for all phytohormones, a sensitivity sufficient to accurately determine the phytohormone levels from less than 50 mg (fresh weight) of Arabidopsis thaliana and Nicotiana benthamiana tissues. Comparison with previously published phytohormone levels and the reported changes in phytohormone levels after stress treatments confirmed the accuracy of the method.
Publikation

Ziegler, J.; Abel, S.; Analysis of amino acids by HPLC/electrospray negative ion tandem mass spectrometry using 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl) derivatization Amino Acids 46, 2799-2808, (2014) DOI: 10.1007/s00726-014-1837-5

A new method for the determination of amino acids is presented. It combines established methods for the derivatization of primary and secondary amino groups with 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl) with the subsequent amino acid specific detection of the derivatives by LC–ESI–MS/MS using multiple reaction monitoring (MRM). The derivatization proceeds within 5 min, and the resulting amino acid derivatives can be rapidly purified from matrix by solid-phase extraction (SPE) on HR-X resin and separated by reversed-phase HPLC. The Fmoc derivatives yield several amino acid specific fragment ions which opened the possibility to select amino acid specific MRM transitions. The method was applied to all 20 proteinogenic amino acids, and the quantification was performed using l-norvaline as standard. A limit of detection as low as 1 fmol/µl with a linear range of up to 125 pmol/µl could be obtained. Intraday and interday precisions were lower than 10 % relative standard deviations for most of the amino acids. Quantification using l-norvaline as internal standard gave very similar results compared to the quantification using deuterated amino acid as internal standards. Using this protocol, it was possible to record the amino acid profiles of only a single root from Arabidopsis thaliana seedlings and to compare it with the amino acid profiles of 20 dissected root meristems (200 μm).
Publikation

Erickson, J. L.; Ziegler, J.; Guevara, D.; Abel, S.; Klösgen, R. B.; Mathur, J.; Rothstein, S. J.; Schattat, M. H.; Agrobacterium-derived cytokinin influences plastid morphology and starch accumulation in Nicotiana benthamiana during transient assays BMC Plant Biol. 14, 127, (2014) DOI: 10.1186/1471-2229-14-127

BackgroundAgrobacterium tumefaciens-based transient assays have become a common tool for answering questions related to protein localization and gene expression in a cellular context. The use of these assays assumes that the transiently transformed cells are observed under relatively authentic physiological conditions and maintain ‘normal’ sub-cellular behaviour. Although this premise is widely accepted, the question of whether cellular organization and organelle morphology is altered in Agrobacterium-infiltrated cells has not been examined in detail. The first indications of an altered sub-cellular environment came from our observation that a common laboratory strain, GV3101(pMP90), caused a drastic increase in stromule frequency. Stromules, or ‘stroma-filled-tubules’ emanate from the surface of plastids and are sensitive to a variety of biotic and abiotic stresses. Starting from this observation, the goal of our experiments was to further characterize the changes to the cell resulting from short-term bacterial infestation, and to identify the factor responsible for eliciting these changes.ResultsUsing a protocol typical of transient assays we evaluated the impact of GV3101(pMP90) infiltration on chloroplast behaviour and morphology in Nicotiana benthamiana. Our experiments confirmed that GV3101(pMP90) consistently induces stromules and alters plastid position relative to the nucleus. These effects were found to be the result of strain-dependant secretion of cytokinin and its accumulation in the plant tissue. Bacterial production of the hormone was found to be dependant on the presence of a trans-zeatin synthase gene (tzs) located on the Ti plasmid of GV3101(pMP90). Bacteria-derived cytokinins were also correlated with changes to both soluble sugar level and starch accumulation.ConclusionAlthough we have chosen to focus on how transient Agrobacterium infestation alters plastid based parameters, these changes to the morphology and position of a single organelle, combined with the measured increases in sugar and starch content, suggest global changes to cell physiology. This indicates that cells visualized during transient assays may not be as ‘normal’ as was previously assumed. Our results suggest that the impact of the bacteria can be minimized by choosing Agrobacterium strains devoid of the tzs gene, but that the alterations to sub-cellular organization and cell carbohydrate status cannot be completely avoided using this strategy.
Publikation

Delker, C.; Sonntag, L.; James, G.; Janitza, P.; Ibañez, C.; Ziermann, H.; Peterson, T.; Denk, K.; Mull, S.; Ziegler, J.; Davis, S.; Schneeberger, K.; Quint, M.; The DET1-COP1-HY5 Pathway Constitutes a Multipurpose Signaling Module Regulating Plant Photomorphogenesis and Thermomorphogenesis Cell Rep. 9, 1983-1989, (2014) DOI: 10.1016/j.celrep.2014.11.043

Developmental plasticity enables plants to respond to elevated ambient temperatures by adapting their shoot architecture. On the cellular level, the basic-helix-loop-helix (bHLH) transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) coordinates this response by activating hormonal modules that in turn regulate growth. In addition to an unknown temperature-sensing mechanism, it is currently not understood how temperature regulates PIF4 activity. Using a forward genetic approach in Arabidopsis thaliana, we present extensive genetic evidence demonstrating that the DE-ETIOLATED 1 (DET1)-CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1)-ELONGATED HYPOCOTYL 5 (HY5)-dependent photomorphogenesis pathway transcriptionally regulates PIF4 to coordinate seedling growth in response to elevated temperature. Our findings demonstrate that two of the most prevalent environmental cues, light and temperature, share a much larger set of signaling components than previously assumed. Similar to the toolbox concept in animal embryonic patterning, multipurpose signaling modules might have evolved in plants to translate various environmental stimuli into adaptational growth processes.
Publikation

Budiharjo, A.; Chowdhury, S. P.; Dietel, K.; Beator, B.; Dolgova, O.; Fan, B.; Bleiss, W.; Ziegler, J.; Schmid, M.; Hartmann, A.; Borriss, R.; Transposon Mutagenesis of the Plant-Associated Bacillus amyloliquefaciens ssp. plantarum FZB42 Revealed That the nfrA and RBAM17410 Genes Are Involved in Plant-Microbe-Interactions PLOS ONE 9, e98267, (2014) DOI: 10.1371/journal.pone.0098267

Bacillus amyloliquefaciens ssp. plantarum FZB42 represents the prototype of Gram-positive plant growth promoting and biocontrol bacteria. In this study, we applied transposon mutagenesis to generate a transposon library, which was screened for genes involved in multicellular behavior and biofilm formation on roots as a prerequisite of plant growth promoting activity. Transposon insertion sites were determined by rescue-cloning followed by DNA sequencing. As in B. subtilis, the global transcriptional regulator DegU was identified as an activator of genes necessary for swarming and biofilm formation, and the DegU-mutant of FZB42 was found impaired in efficient root colonization. Direct screening of 3,000 transposon insertion mutants for plant-growth-promotion revealed the gene products of nfrA and RBAM_017140 to be essential for beneficial effects exerted by FZB42 on plants. We analyzed the performance of GFP-labeled wild-type and transposon mutants in the colonization of lettuce roots using confocal laser scanning microscopy. While the wild-type strain heavily colonized root surfaces, the nfrA mutant did not colonize lettuce roots, although it was not impaired in growth in laboratory cultures, biofilm formation and swarming motility on agar plates. The RBAM17410 gene, occurring in only a few members of the B. subtilis species complex, was directly involved in plant growth promotion. None of the mutant strains were affected in producing the plant growth hormone auxin. We hypothesize that the nfrA gene product is essential for overcoming the stress caused by plant response towards bacterial root colonization.
Publikation

Bosch, M.; Wright, L. P.; Gershenzon, J.; Wasternack, C.; Hause, B.; Schaller, A.; Stintzi, A.; Jasmonic Acid and Its Precursor 12-Oxophytodienoic Acid Control Different Aspects of Constitutive and Induced Herbivore Defenses in Tomato Plant Physiol. 166, 396-410, (2014) DOI: 10.1104/pp.114.237388

The jasmonate family of growth regulators includes the isoleucine (Ile) conjugate of jasmonic acid (JA-Ile) and its biosynthetic precursor 12-oxophytodienoic acid (OPDA) as signaling molecules. To assess the relative contribution of JA/JA-Ile and OPDA to insect resistance in tomato (Solanum lycopersicum), we silenced the expression of OPDA reductase3 (OPR3) by RNA interference (RNAi). Consistent with a block in the biosynthetic pathway downstream of OPDA, OPR3-RNAi plants contained wild-type levels of OPDA but failed to accumulate JA or JA-Ile after wounding. JA/JA-Ile deficiency in OPR3-RNAi plants resulted in reduced trichome formation and impaired monoterpene and sesquiterpene production. The loss of these JA/JA-Ile -dependent defense traits rendered them more attractive to the specialist herbivore Manduca sexta with respect to feeding and oviposition. Oviposition preference resulted from reduced levels of repellant monoterpenes and sesquiterpenes. Feeding preference, on the other hand, was caused by increased production of cis-3-hexenal acting as a feeding stimulant for M. sexta larvae in OPR3-RNAi plants. Despite impaired constitutive defenses and increased palatability of OPR3-RNAi leaves, larval development was indistinguishable on OPR3-RNAi and wild-type plants, and was much delayed compared with development on the jasmonic acid-insensitive1 (jai1) mutant. Apparently, signaling through JAI1, the tomato ortholog of the ubiquitin ligase CORONATINE INSENSITIVE1 in Arabidopsis (Arabidopsis thaliana), is required for defense, whereas the conversion of OPDA to JA/JA-Ile is not. Comparing the signaling activities of OPDA and JA/JA-Ile, we found that OPDA can substitute for JA/JA-Ile in the local induction of defense gene expression, but the production of JA/JA-Ile is required for a systemic response.
Publikation

Floková, K.; Tarkowská, D.; Miersch, O.; Strnad, M.; Wasternack, C.; Novák, O.; UHPLC–MS/MS based target profiling of stress-induced phytohormones Phytochemistry 105, 147-157, (2014) DOI: 10.1016/j.phytochem.2014.05.015

Stress-induced changes in phytohormone metabolite profiles have rapid effects on plant metabolic activity and growth. The jasmonates (JAs) are a group of fatty acid-derived stress response regulators with roles in numerous developmental processes. To elucidate their dual regulatory effects, which overlap with those of other important defence-signalling plant hormones such as salicylic acid (SA), abscisic acid (ABA) and indole-3-acetic acid (IAA), we have developed a highly efficient single-step clean-up procedure for their enrichment from complex plant matrices that enables their sensitive quantitative analysis using hyphenated mass spectrometry technique. The rapid extraction of minute quantities of plant material (less than 20 mg fresh weight, FW) into cold 10% methanol followed by one-step reversed-phase polymer-based solid phase extraction significantly reduced matrix effects and increased the recovery of labile JA analytes. This extraction and purification protocol was paired with a highly sensitive and validated ultra-high performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method and used to simultaneously profile sixteen stress-induced phytohormones in minute plant material samples, including endogenous JA, several of its biosynthetic precursors and derivatives, as well as SA, ABA and IAA.
Publikation

Wasternack, C.; Perception, signaling and cross-talk of jasmonates and the seminal contributions of the Daoxin Xie’s lab and the Chuanyou Li’s lab Plant Cell Rep. 33, 707-718, (2014) DOI: 10.1007/s00299-014-1608-5

Jasmonates (JAs) are lipid-derived signals in plant responses to biotic and abiotic stresses and in development. The most active JA compound is (+)-7-iso-JA-Ile, a JA conjugate with isoleucine. Biosynthesis, metabolism and key components of perception and signal transduction have been identified and numerous JA-induced gene expression data collected. For JA-Ile perception, the SCFCOI1–JAZ co-receptor complex has been identified and crystalized. Activators such as MYC2 and repressors such as JAZs including their targets were found. Involvement of JA-Ile in response to herbivores and pathogens and in root growth inhibition is among the most studied aspects of JA-Ile signaling. There are an increasing number of examples, where JA-Ile shows cross-talk with other plant hormones. Seminal contributions in JA/JA-Ile research were given by Daoxin Xie’s lab and Chuanyou Li’s lab, both in Beijing. Here, characterization was done regarding components of the JA-Ile receptor, such as COI1 (JAI1) and SCF, regarding activators (MYCs, MYBs) and repressors (JAV1, bHLH IIId’s) of JA-regulated gene expression, as well as regarding components of auxin biosynthesis and action, such as the transcription factor PLETHORA active in the root stem cell niche. This overview reflects the work of both labs in the light of our present knowledge on biosynthesis, perception and signal transduction of JA/JA-Ile and its cross-talk to other hormones.
Publikation

Wasternack, C.; Hause, B.; Blütenduft, Abwehr, Entwicklung: Jasmonsäure - ein universelles Pflanzenhormon Biologie in unserer Zeit 44, 164-171, (2014) DOI: 10.1002/biuz.201410535

Pflanzen müssen gegen vielfältige biotische und abiotische Umwelteinflusse eine Abwehr aufbauen. Aber gleichzeitig müssen sie wachsen und sich vermehren. Jasmonate sind neben anderen Hormonen ein zentrales Signal bei der Etablierung von Abwehrmechanismen, aber auch Signal von Entwicklungsprozessen wie Blüten‐ und Trichombildung, sowie der Hemmung von Wachstum. Biosynthese und essentielle Komponenten der Signaltransduktion von JA und seinem biologisch aktiven Konjugat JA‐Ile sind gut untersucht. Der Rezeptor ist ein Proteinkomplex, der “JA‐Ile‐Wahrnehmung” mit proteasomalem Abbau von Repressorproteinen verbindet. Dadurch können positiv agierende Transkriptionsfaktoren wirksam werden und vielfältige Genexpressionsänderungen auslösen. Dies betrifft die Bildung von Abwehrproteinen, Enzymen der JA‐Biosynthese und Sekundärstoffbildung, und Proteinen von Signalketten und Entwicklungsprozessen. Die Kenntnisse zur JA‐Ile‐Wirkung werden in Landwirtschaft und Biotechnologie genutzt.
Publikation

Wasternack, C.; Action of jasmonates in plant stress responses and development — Applied aspects Biotechnol. Adv. 32, 31-39, (2014) DOI: 10.1016/j.biotechadv.2013.09.009

Jasmonates (JAs) are lipid-derived compounds acting as key signaling compounds in plant stress responses and development. The JA co-receptor complex and several enzymes of JA biosynthesis have been crystallized, and various JA signal transduction pathways including cross-talk to most of the plant hormones have been intensively studied. Defense to herbivores and necrotrophic pathogens are mediated by JA. Other environmental cues mediated by JA are light, seasonal and circadian rhythms, cold stress, desiccation stress, salt stress and UV stress. During development growth inhibition of roots, shoots and leaves occur by JA, whereas seed germination and flower development are partially affected by its precursor 12-oxo-phytodienoic acid (OPDA). Based on these numerous JA mediated signal transduction pathways active in plant stress responses and development, there is an increasing interest in horticultural and biotechnological applications. Intercropping, the mixed growth of two or more crops, mycorrhization of plants, establishment of induced resistance, priming of plants for enhanced insect resistance as well as pre- and post-harvest application of JA are few examples. Additional sources for horticultural improvement, where JAs might be involved, are defense against nematodes, biocontrol by plant growth promoting rhizobacteria, altered composition of rhizosphere bacterial community, sustained balance between growth and defense, and improved plant immunity in intercropping systems. Finally, biotechnological application for JA-induced production of pharmaceuticals and application of JAs as anti-cancer agents were intensively studied.
IPB Mainnav Search