zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 13.

Publikation

Wasternack, C.; Miersch, O.; Kramell, R.; Hause, B.; Ward, J.; Beale, M.; Boland, W.; Parthier, B.; Feussner, I.; Jasmonic acid: biosynthesis, signal transduction, gene expression Fett/Lipid 100, 139-146, (1998) DOI: 10.1002/(SICI)1521-4133(19985)100:4/5<139::AID-LIPI139>3.0.CO;2-5

Jasmonic acid (JA) is an ubiquitously occurring plant growth regulator which functions as a signal of developmentally or environmentally regulated expression of various genes thereby contributing to the defense status of plants [1–5]. The formation of jasmonates in a lipid‐based signalling pathway via octadecanoids seems to be a common principle for many plant species to express wound‐ and stressinduced genes [4, 5].There are various octadecanoid‐derived signals [3]. Among them, jasmonic acid and its amino acid conjugates are most active in barley, supporting arguments that β‐oxidation is an essential step in lipid‐based JA mediated responses. Furthermore, among derivatives of 12‐oxophytodienoic acid (PDA) carrying varying length of the carboxylic acid side‐chain, only those with a straight number of carbon atoms are able to induce JA responsive genes in barley leaves after treatment with these compounds. Barley leaves stressed by treatment with sorbitol solutions exhibit mainly an endogenous rise of JA and JA amino acid conjugates suggesting that both of them are stress signals. Data on organ‐ and tissue‐specific JA‐responsive gene expression will be presented and discussed in terms of “JA as a master switch” among various lipid‐derived signals.
Publikation

Wasternack, C.; Ortel, B.; Miersch, O.; Kramell, R.; Beale, M.; Greulich, F.; Feussner, I.; Hause, B.; Krumm, T.; Boland, W.; Parthier, B.; Diversity in octadecanoid-induced gene expression of tomato J. Plant Physiol. 152, 345-352, (1998) DOI: 10.1016/S0176-1617(98)80149-1

In tomato plants wounding leads to up-regulation of various plant defense genes via jasmonates (Ryan, 1992; Bergey et al., 1996). Using this model system of jasmonic acid (JA) signalling, we analyzed activity of octadecanoids to express JA-responsive genes. Leaf treatments were performed with naturally occurring octadecanoids and their molecular mimics such as coronatine or indanone conjugates. JA responses were recorded in terms of up- or down-regulation of various genes by analyzing transcript accumulation, and at least partially in vitro translation products and polypeptide pattern of leaf extracts. The data suggest: (i) 12-Oxo-phytodienoic acid and other intermediates of the octadecanoid pathway has to be ß-oxidized to give a JA response, (ii) Octadecanoids which can not be ß-oxidized are inactive, (iii) JA, its methyl ester (JM), and its amino acid conjugates are most active signals in tomato leaves leading to up regulation of mainly wound-inducible genes and down-regulation of mainly <house-keeping> genes, (iv) Some compounds carrying a JA/JM- or JA amino acid conjugate-like structure induce/repress only a subset of genes suggesting diversity of JA signalling.
Publikation

Vörös, K.; Feussner, I.; Kühn, H.; Lee, J.; Graner, A.; Löbler, M.; Parthier, B.; Wasternack, C.; Characterization of a methyljasmonate-inducible lipoxygenase from barley (Hordeum vulgare cv. Salome) leaves Eur. J. Biochem. 251, 36-44, (1998) DOI: 10.1046/j.1432-1327.1998.2510036.x

We found three methyl jasmonate−induced lipoxygenases with molecular masses of 92 kDa, 98 kDa, and 100 kDa (LOX‐92, ‐98 and ‐100) [Feussner, I., Hause, B., Vörös, K., Parthier, B. & Wasternack, C. (1995) Plant J. 7 , 949−957]. At least two of them (LOX‐92 and LOX‐100), were shown to be localized within chloroplasts of barley leaves. Here, we describe the isolation of a cDNA (3073 bp) coding for LOX‐100, a protein of 936 amino acid residues and a molecular mass of 106 kDa. By sequence comparison this lipoxygenase could be identified as LOX2‐type lipoxygenase and was therefore designated LOX2 : Hv : 1 . The recombinant lipoxygenase was expressed in Escherichia coli and characterized as linoleate 13‐LOX and arachidonate 15‐LOX, respectively. The enzyme exhibited a pH optimum around pH 7.0 and a moderate substrate preference for linoleic acid. The gene was transiently expressed after exogenous application of jasmonic acid methyl ester with a maximum between 12 h and 18 h. Its expression was not affected by exogenous application of abscisic acid. Also a rise of endogenous jasmonic acid resulting from sorbitol stress did not induce LOX2 : Hv : 1 , suggesting a separate signalling pathway compared with other jasmonate‐induced proteins of barley. The properties of LOX2 : Hv : 1 are discussed in relation to its possible involvement in jasmonic acid biosynthesis and other LOX forms of barley identified so far.
Publikation

Vignutelli, A.; Wasternack, C.; Apel, K.; Bohlmann, H.; Systemic and local induction of an Arabidopsis thionin gene by wounding and pathogens Plant J. 14, 285-295, (1998) DOI: 10.1046/j.1365-313X.1998.00117.x

The Arabidopsis Thi2.1 thionin gene was cloned and sequenced. The promoter was fused to the uidA gene and stably transformed into Arabidopsis to study its regulation. GUS expression levels correlated with the steady‐state levels of Thi2.1 mRNA, thus demonstrating that the promoter is sufficient for the regulation of the Thi2.1 gene. The sensitivity of the Thi2.1 gene to methyl jasmonate was found to be developmentally determined. Systemic and local expression could be induced by wounding and inoculation with Fusarium oxysporum f sp. matthiolae . A deletion analysis of the promoter identified a fragment of 325 bp upstream of the start codon, which appears to contain all the elements necessary for the regulation of the Thi2.1 gene. These results support the view that thionins are defence proteins, and indicate the possibility that resistance of Arabidopsis plants to necrotrophic fungal pathogens is mediated through the octadecanoid pathway.
Publikation

Ratajczak, R.; Feussner, I.; Hause, B.; Böhm, A.; Parthier, B.; Wasternack, C.; Alteration of V-type H+-ATPase during methyljasmonate-induced senescence in barley (Hordeum vulgare L. cv. Salome) J. Plant Physiol. 152, 199-206, (1998) DOI: 10.1016/S0176-1617(98)80133-8

In barley leaves, the application of (−)-jasmonic acid or its methyl ester (JAME) induces a senescencelike phenotype. This is accompanied by the synthesis of abundant proteins, so-called jasmonate-induced proteins (JlPs). Here, we show that modifications of vacuolar H+-ATPase (V-ATPase) subunits are jasmo-nate inducible. Using immunofluorescence analysis, we demonstrate that V-ATPase of barley leaves is exclusively located at the tonoplast also upon JAME treatment. Total ATP-hydrolysis activity of microsomal fractions increased by a factor of 10 during 72 h of JAME-treatment, while Bafilomycin Ai-sensitive ATP-hydrolysis activity, which is usually referred to V-ATPase activity, increased by a factor of about 2 in tono-plast-enriched membrane fractions. Moreover, due to JAME treatment there was a pronounced increase in ATP-hydrolysis activity at pH 6.2. This activity was not affected by inhibitors of P-, F-, or V-ATPases. However, biochemical analysis of partially purified V-ATPase suggests, that this activity might be due at least in part to the V-ATPase. JAME-treatment seems to change biochemical properties of the V-ATPase, i.e. a shift of the pH optimum of activity to a more acidic pH and a decrease in Bafilomycin A1 sensitivity. This is accompanied by the appearance of several additional forms of V-ATPase subunits which might represent either different isoforms or post-translationally modified proteins. We suggest that these changes in properties of the V-ATPase, which is involved in house-keeping and stress responses, may be due to JAME-induced senescence to overcome concomitant changes of the vacuolar membrane.
Publikation

Feussner, I.; Wasternack, C.; Lipoxygenase catalyzed oxygenation of lipids Fett/Lipid 100, 146-152, (1998) DOI: 10.1002/(SICI)1521-4133(19985)100:4/5<146::AID-LIPI146>3.0.CO;2-D

Lipoxygenases (LOXs) and other LOX pathway enzymes are potentially able to form a large set of compounds being of commercial interest. Among them are conjugated dienic acids, jasmonates, and volatile aldehydes. Additionally, fatty acid hydroperoxides, formed by LOX, can serve as precursors for further transformation by either enzymes of the so‐called LOX pathway or by chemical reactions. In the case of linoleic acid more than one hundred products generated from its LOX‐derived fatty acid hydroperoxides have been described. Many of these products exhibit biological activity, suggesting a significant biological function of LOXs. This will be described for two different 13‐LOXs. (I) In various oilseeds we found that specific 13‐LOXs are localized at the lipid body membrane. They are capable of oxygenating esterified polyenoic fatty acids, such as triacylglycerols and phospho‐lipids. In addition, they form with arachidonic acid as substrate preferentially either 8‐ or 11‐hydroperoxy eicosatetraenoic acid, which is a very unusual positional specificity for plant LOXs. (II) From barley leaves we isolated another linoleate 13‐LOX form, which is localized within chloroplasts and is induced by jasmonic acid methyl ester. It is suggested, that this LOX form is capable of oxygenating linolenic acid residues of galactolipids. Examples will be presented for barley leaves of oxygenated derivatives of linolenic acid and compounds resulting from the hydroperoxide lyase‐branch of the LOX pathway.
Publikation

Churin, J.; Hause, B.; Feussner, I.; Maucher, H. P.; Feussner, K.; Börner, T.; Wasternack, C.; Cloning and expression of a new cDNA from monocotyledonous plants coding for a diadenosine 5′,5′′′-P1,P4-tetraphosphate hydrolase from barley (Hordeum vulgare) FEBS Lett. 431, 481-485, (1998) DOI: 10.1016/S0014-5793(98)00819-9

From a cDNA library generated from mRNA of white leaf tissues of the ribosome‐deficient mutant ‘albostrians' of barley (Hordeum vulgare cv. Haisa) a cDNA was isolated carrying 54.2% identity to a recently published cDNA which codes for the diadenosine‐5′,5′′′‐P1,P4‐tetraphosphate (Ap4A) hydrolase of Lupinus angustifolius (Maksel et al. (1998) Biochem. J. 329, 313–319), and 69% identity to four partial peptide sequences of Ap4A hydrolase of tomato. Overexpression in Escherichia coli revealed a protein of about 19 kDa, which exhibited Ap4A hydrolase activity and cross‐reactivity with an antibody raised against a purified tomato Ap4A hydrolase (Feussner et al. (1996) Z. Naturforsch. 51c, 477–486). Expression studies showed an mRNA accumulation in all organs of a barley seedling. Possible functions of Ap4A hydrolase in plants will be discussed.
Publikation

Bohlmann, H.; Vignutelli, A.; Hilpert, B.; Miersch, O.; Wasternack, C.; Apel, K.; Wounding and chemicals induce expression of the Arabidopsis thaliana gene Thi2.1, encoding a fungal defense thionin, via the octadecanoid pathway FEBS Lett. 437, 281-286, (1998) DOI: 10.1016/S0014-5793(98)01251-4

In seedlings of Arabidopsis thaliana the thionin gene Thi2.1 is inducible by methyl jasmonate, wounding, silver nitrate, coronatine, and sorbitol. We have used a biochemical and genetic approach to test the signal transduction of these different inducers. Both exogenously applied jasmonates and jasmonates produced endogenously upon stress induction, lead to GUS expression in a Thi2.1 promoter-uidA transgenic line. No GUS expression was observed in a coi1 mutant background which lacks jasmonate perception whereas methyl jasmonate and coronatine but not the other inducers were able to overcome the block in jasmonic acid production in a fad3-2 fad7-2 fad8 mutant background. Our results show conclusively that all these inducers regulate Thi2-1 gene expression via the octadecanoid pathway.
Bücher und Buchkapitel

Kohlmann, M.; Kuntzsch, A.; Wasternack, C.; Feussner, I.; Effect of Jasmonic Acid Methyl Ester on Enzymes of Lipoxygenase Pathway in Barley Leaves 339-340, (1998)

0
Bücher und Buchkapitel

Feussner, I.; Balkenhohl, T. J.; Porzel, A.; Kühn, H.; Wasternack, C.; Structural Elucidation of Oxygenated Triacylglycerols in Cucumber and Sunflower Cotyledons 57-58, (1998)

0
IPB Mainnav Search