zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 233.

Publikation

Wasternack, C.; Hause, B.; BFP1: One of 700 Arabidopsis F-box proteins mediates degradation of JA oxidases to promote plant immunity Mol. Plant 17, 375-376, (2024) DOI: 10.1016/j.molp.2024.02.008

0
Preprints

Mik, V.; Poslíšil, T.; Brunoni, F.; Grúz, J.; Nožková, V.; Wasternack, C.; Miersch, O.; Strnad, M.; Floková, K.; Novák, O.; Široká, J.; Synthetic and analytical routes to the L-amino acid conjugates of cis-OPDA and their identification and quantification in plants ChemRxiv (2023) DOI: 10.26434/chemrxiv-2023-qlzj4

Cis-(+)-12-oxophytodienoic acid (cis-(+)-OPDA) is a bioactive jasmonate, a precursor of jasmonic acid, which also displays signaling activity on its own. Modulation of cis-(+)-OPDA actions may be carried out via biotransformation leading to metabolites of various functions, similar to other phytohormones. This work introduces a methodology for the synthesis of racemic cis-OPDA conjugates with amino acids (OPDA-aa) and their deuterium-labeled analogs, which enables the identification and accurate quantification of these compounds in plants. We have developed a highly sensitive liquid chromatography-tandem mass spectrometry-based method for the reliable determination of seven OPDA-aa (OPDA-Alanine, OPDA-Aspartate, OPDA-Glutamate, OPDA-Glycine, OPDA-Isoleucine, OPDA-Phenylalanine, and OPDA-Valine) from minute amount of plant material. The extraction from 10 mg of fresh plant tissue by 10% aqueous methanol followed by single-step sample clean-up on hydrophilic–lipophilic balanced columns prior to final analysis was optimized. The method was validated in terms of accuracy and precision, and the method parameters such as process efficiency, recovery and matrix effects were evaluated. In mechanically wounded 30-day-old Arabidopsis thaliana leaves, five endogenous (+)-OPDA-aa were identified and their endogenous levels reached a maximum of pmol/g. The time-course accumulation revealed a peak 60 min after the wounding, roughly corresponding to the accumulation of cis-(+)-OPDA. Current synthetic and analytical methodologies support studies on cis-(+)-OPDA conjugation with amino acids and research into the biological significance of these metabolites in plants.
Publikation

Paponov, M.; Ziegler, J.; Paponov, I. A.; Light exposure of roots in aeroponics enhances the accumulation of phytochemicals in aboveground parts of the medicinal plants Artemisia annua and Hypericum perforatum Front. Plant Sci. 14, 1079656, (2023) DOI: 10.3389/fpls.2023.1079656

Light acts as a trigger to enhance the accumulation of secondary compounds in the aboveground part of plants; however, whether a similar triggering effect occurs in roots is unclear. Using an aeroponic setup, we investigated the effect of long-term exposure of roots to LED lighting of different wavelengths on the growth and phytochemical composition of two high-value medicinal plants, Artemisia annua and Hypericum perforatum. In A. annua, root exposure to white, blue, and red light enhanced the accumulation of artemisinin in the shoots by 2.3-, 2.5-, and 1.9-fold, respectively. In H. perforatum, root exposure to white, blue, red, and green light enhanced the accumulation of coumaroylquinic acid in leaves by 89, 65, 84, and 74%, respectively. Root lighting also increased flavonol concentrations. In contrast to its effects in the shoots, root illumination did not change phytochemical composition in the roots or root exudates. Thus, root illumination induces a systemic response, resulting in modulation of the phytochemical composition in distal tissues remote from the light exposure site.
Publikation

Paponov, M.; Flate, J.; Ziegler, J.; Lillo, C.; Paponov, I. A.; Heterogeneous nutrient supply modulates root exudation and accumulation of medicinally valuable compounds in Artemisia annua and Hypericum perforatum Front. Plant Sci. 14, 1174151, (2023) DOI: 10.3389/fpls.2023.1174151

Plants have evolved complex mechanisms to adapt to nutrient-deficient environments, including stimulating lateral root proliferation into local soil patches with high nutrient content in response to heterogeneous nutrient distribution. Despite the widespread occurrence of this phenomenon in soil, the effect of heterogeneous nutrient distribution on the accumulation of secondary compounds in plant biomass and their exudation by roots remains largely unknown. This study aims to fill this critical knowledge gap by investigating how deficiency and unequal distributions of nitrogen (N), phosphorus (P), and iron (Fe) affect plant growth and accumulation of the antimalarial drug artemisinin (AN) in leaves and roots of Artemisia annua, as well as AN exudation by roots. Heterogeneous N and P supplies strongly increased root exudation of AN in half of a split-root system exposed to nutrient deficiency. By contrast, exposure to a homogeneous nitrate and phosphate deficiency did not modulate root exudation of AN. This indicates that a combination of local and systemic signals, reflecting low and high nutritional statuses, respectively, were required to enhance AN exudation. This exudation response was independent of the regulation of root hair formation, which was predominantly modulated by the local signal. In contrast to the heterogeneous supply of N and P, heterogeneous Fe supply did not modulate AN root exudation but increased AN accumulation in locally Fe-deficient roots. No modulation of nutrient supply significantly changed the accumulation of AN in A. annua leaves. The impact of a heterogeneous nitrate supply on growth and phytochemical composition was also investigated in Hypericum perforatum plants. Unlike in A. annue, the uneven N supply did not significantly influence the exudation of secondary compounds in the roots of H. perforatum. However, it did enhance the accumulation of several biologically active compounds, such as hypericin, catechin, and rutin isomers, in the leaves of H. perforatum. We propose that the capacity of plants to induce the accumulation and/or differential exudation of secondary compounds under heterogeneous nutrient supply is both species- and compound-specific. The ability to differentially exude AN may contribute to A. annua’s adaptation to nutrient disturbances and modulate allelopathic and symbiotic interactions in the rhizosphere.
Publikation

Mik, V.; Pospíšil, T.; Brunoni, F.; Grúz, J.; Nožková, V.; Wasternack, C.; Miersch, O.; Strnad, M.; Floková, K.; Novák, O.; Široká, J.; Synthetic and analytical routes to the L-amino acid conjugates of cis-OPDA and their identification and quantification in plants Phytochemistry 215, 113855, (2023) DOI: 10.1016/j.phytochem.2023.113855

Cis-(+)-12-oxophytodienoic acid (cis-(+)-OPDA) is a bioactive jasmonate, a precursor of jasmonic acid, which also displays signaling activity on its own. Modulation of cis-(+)-OPDA actions may be carried out via biotransformation leading to metabolites of various functions. This work introduces a methodology for the synthesis of racemic cis-OPDA conjugates with amino acids (OPDA-aa) and their deuterium-labeled analogs, which enables the unambiguous identification and accurate quantification of these compounds in plants. We have developed a highly sensitive liquid chromatography-tandem mass spectrometry-based method for the reliable determination of seven OPDA-aa (OPDA-Alanine, OPDA-Aspartate, OPDA-Glutamate, OPDA-Glycine, OPDA-Isoleucine, OPDA-Phenylalanine, and OPDA-Valine) from minute amount of plant material. The extraction from 10 mg of fresh plant tissue by 10% aqueous methanol followed by single-step sample clean-up on hydrophilic–lipophilic balanced columns prior to final analysis was optimized. The method was validated in terms of accuracy and precision, and the method parameters such as process efficiency, recovery and matrix effects were evaluated. In mechanically wounded 30-day-old Arabidopsis thaliana leaves, five endogenous (+)-OPDA-aa were identified and their endogenous levels were estimated. The time-course accumulation revealed a peak 60 min after the wounding, roughly corresponding to the accumulation of cis-(+)-OPDA. Our synthetic and analytical methodologies will support studies on cis-(+)-OPDA conjugation with amino acids and research into the biological significance of these metabolites in plants.
Publikation

Blatt-Janmaat, K.; Neumann, S.; Schmidt, F.; Ziegler, J.; Qu, Y.; Peters, K.; Impact of in vitro phytohormone treatments on the metabolome of the leafy liverwort Radula complanata (L.) Dumort Metabolomics 19, 17, (2023) DOI: 10.1007/s11306-023-01979-y

Introduction Liverworts are a group of non-vascular plants that possess unique metabolism not found in other plants. Many liverwort metabolites have interesting structural and biochemical characteristics, however the fluctuations of these metabolites in response to stressors is largely unknown. Objectives To investigate the metabolic stress-response of the leafy liverwort Radula complanata. Methods Five phytohormones were applied exogenously to in vitro cultured R. complanata and an untargeted metabolomic analysis was conducted. Compound classification and identification was performed with CANOPUS and SIRIUS while statistical analyses including PCA, ANOVA, and variable selection using BORUTA were conducted to identify metabolic shifts.Results It was found that R. complanata was predominantly composed of carboxylic acids and derivatives, followed by benzene and substituted derivatives, fatty acyls, organooxygen compounds, prenol lipids, and flavonoids. The PCA revealed that samples grouped based on the type of hormone applied, and the variable selection using BORUTA (Random Forest) revealed 71 identified and/or classified features that fluctuated with phytohormone application. The stress-response treatments largely reduced the production of the selected primary metabolites while the growth treatments resulted in increased production of these compounds. 4-(3-Methyl-2-butenyl)-5-phenethylbenzene-1,3-diol was identified as a biomarker for the growth treatments while GDP-hexose was identified as a biomarker for the stress-response treatments. Conclusion Exogenous phytohormone application caused clear metabolic shifts in Radula complanata that deviate from the responses of vascular plants. Further identification of the selected metabolite features can reveal metabolic biomarkers unique to liverworts and provide more insight into liverwort stress responses.
Publikation

Blatt-Janmaat, K. L.; Neumann, S.; Ziegler, J.; Peters, K.; Host tree and geography induce metabolic shifts in the epiphytic liverwort Radula complanata Plants 12, 571, (2023) DOI: 10.3390/plants12030571

Bryophytes are prolific producers of unique, specialized metabolites that are not found in other plants. As many of these unique natural products are potentially interesting, for example, pharmacological use, variations in the production regarding ecological or environmental conditions have not often been investigated. Here, we investigate metabolic shifts in the epiphytic Radula complanata L. (Dumort) with regard to different environmental conditions and the type of phorophyte (host tree). Plant material was harvested from three different locations in Sweden, Germany, and Canada and subjected to untargeted liquid chromatography high-resolution mass-spectrometry (UPLC/ESI-QTOF-MS) and data-dependent acquisition (DDA-MS). Using multivariate statistics, variable selection methods, in silico compound identification, and compound classification, a large amount of variation (39%) in the metabolite profiles was attributed to the type of host tree and 25% to differences in environmental conditions. We identified 55 compounds to vary significantly depending on the host tree (36 on the family level) and 23 compounds to characterize R. complanata in different environments. Taken together, we found metabolic shifts mainly in primary metabolites that were associated with the drought response to different humidity levels. The metabolic shifts were highly specific to the host tree, including mostly specialized metabolites suggesting high levels of ecological interaction. As R. complanata is a widely distributed generalist species, we found it to flexibly adapt its metabolome according to different conditions. We found metabolic composition to also mirror the constitution of the habitat, which makes it interesting for conservation measures.
Publikation

Aryal, B.; Xia, J.; Hu, Z.; Stumpe, M.; Tsering, T.; Liu, J.; Huynh, J.; Fukao, Y.; Glöckner, N.; Huang, H.-Y.; Sancho-Andrés, G.; Pakula, K.; Ziegler, J.; Gorzolka, K.; Zwiewka, M.; Nodzynski, T.; Harter, K.; Sánchez-Rodríguez, C.; Jasiński, M.; Rosahl, S.; Geisler, M. M.; An LRR receptor kinase controls ABC transporter substrate preferences during plant growth-defense decisions Curr. Biol. 33, 2008-2023, (2023) DOI: 10.1016/j.cub.2023.04.029

The exporter of the auxin precursor indole-3-butyric acid (IBA), ABCG36/PDR8/PEN3, from the model plant Arabidopsis has recently been proposed to also function in the transport of the phytoalexin camalexin. Based on these bonafide substrates, it has been suggested that ABCG36 functions at the interface between growth and defense. Here, we provide evidence that ABCG36 catalyzes the direct, ATP-dependent export of camalexin across the plasma membrane. We identify the leucine-rich repeat receptor kinase, QIAN SHOU KINASE1 (QSK1), as a functional kinase that physically interacts with and phosphorylates ABCG36. Phosphorylation of ABCG36 by QSK1 unilaterally represses IBA export, allowing camalexin export by ABCG36 conferring pathogen resistance. As a consequence, phospho-dead mutants of ABCG36, as well as qsk1 and abcg36 alleles, are hypersensitive to infection with the root pathogen Fusarium oxysporum, caused by elevated fungal progression. Our findings indicate a direct regulatory circuit between a receptor kinase and an ABC transporter that functions to control transporter substrate preference during plant growth and defense balance decisions.
Publikation

Abukhalaf, M.; Proksch, C.; Thieme, D.; Ziegler, J.; Hoehenwarter, W.; Changing turn-over rates regulate abundance of tryptophan, GS biosynthesis, IAA transport and photosynthesis proteins in Arabidopsis growth defense transitions BMC Biol. 21, 249, (2023) DOI: 10.1186/s12915-023-01739-3

Background Shifts in dynamic equilibria of the abundance of cellular molecules in plant-pathogen interactions need further exploration. We induced PTI in optimally growing Arabidopsis thaliana seedlings for 16 h, returning them to growth conditions for another 16 h. Methods Turn-over and abundance of 99 flg22 responding proteins were measured chronologically using a stable heavy nitrogen isotope partial labeling strategy and targeted liquid chromatography coupled to mass spectrometry (PRM LC–MS). These experiments were complemented by measurements of mRNA and phytohormone levels. Results Changes in synthesis and degradation rate constants (Ks and Kd) regulated tryptophane and glucosinolate, IAA transport, and photosynthesis-associated protein (PAP) homeostasis in growth/PTI transitions independently of mRNA levels. Ks values increased after elicitation while protein and mRNA levels became uncorrelated. mRNA returned to pre-elicitation levels, yet protein abundance remained at PTI levels even 16 h after media exchange, indicating protein levels were robust and unresponsive to transition back to growth. The abundance of 23 PAPs including FERREDOXIN-NADP( +)-OXIDOREDUCTASE (FNR1) decreased 16 h after PAMP exposure, their depletion was nearly abolished in the myc234 mutant. FNR1 Kd increased as mRNA levels decreased early in PTI, its Ks decreased in prolonged PTI. FNR1 Kd was lower in myc234, mRNA levels decreased as in wild type. Conclusions Protein Kd and Ks values change in response to flg22 exposure and constitute an additional layer of protein abundance regulation in growth defense transitions next to changes in mRNA levels. Our results suggest photosystem remodeling in PTI to direct electron flow away from the photosynthetic carbon reaction towards ROS production as an active defense mechanism controlled post-transcriptionally and by MYC2 and homologs. Target proteins accumulated later and PAP and auxin/IAA depletion was repressed in myc234 indicating a positive effect of the transcription factors in the establishment of PTI.
Bücher und Buchkapitel

Niemeyer, M.; Parra, J. O. F.; Calderón Villalobos, L. I. A.; An in vitro assay to recapitulate hormone-triggered and SCF-mediated protein ubiquitylation (Lois, L.M., Trujillo, M.). Methods Mol. Biol. 2581, 43-56, (2023) ISBN: 978-1-0716-2783-9 DOI: 10.1007/978-1-0716-2784-6_4

Signaling proteins trigger a sequence of molecular switches in the cell, which permit development, growth, and rapid adaptation to changing environmental conditions. SCF-type E3 ubiquitin ligases recognize signaling proteins prompting changes in their fate, one of these being ubiquitylation followed by degradation by the proteasome. SCFs together with their ubiquitylation targets (substrates) often serve as phytohormone receptors, responding and/or assembling in response to fluctuating intracellular hormone concentrations. Tracing and understanding phytohormone perception and SCF-mediated ubiquitylation of proteins could provide powerful clues on the molecular mechanisms utilized for plant adaptation. Here, we describe an adaptable in vitro system that uses recombinant proteins and enables the study of hormone-triggered SCF-substrate interaction and the dynamics of protein ubiquitylation. This system can serve to predict the requirements for protein recognition and to understand how phytohormone levels have the power to control protein fate.
IPB Mainnav Search