zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 17.

Publikation

Wasternack, C.; Termination in Jasmonate Signaling by MYC2 and MTBs Trends Plant Sci. 24, 667-669, (2019) DOI: 10.1016/j.tplants.2019.06.001

Jasmonic acid (JA) signaling can be switched off by metabolism of JA. The master regulator MYC2, interacting with MED25, has been shown to be deactivated by the bHLH transcription factors MTB1, MTB2, and MTB3. An autoregulatory negative feedback loop has been proposed for this termination in JA signaling.
Publikation

Wasternack, C.; New Light on Local and Systemic Wound Signaling Trends Plant Sci. 24, 102-105, (2019) DOI: 10.1016/j.tplants.2018.11.009

Electric signaling and Ca2+ waves were discussed to occur in systemic wound responses. Two new overlapping scenarios were identified: (i) membrane depolarization in two special cell types followed by an increase in systemic cytoplasmic Ca2+ concentration ([Ca2+]cyt), and (ii) glutamate sensed by GLUTAMATE RECEPTOR LIKE proteins and followed by Ca2+-based defense in distal leaves.
Publikation

Wasternack, C.; Hause, B.; A Bypass in Jasmonate Biosynthesis – the OPR3-independent Formation Trends Plant Sci. 23, 276-279, (2018) DOI: 10.1016/j.tplants.2018.02.011

For the first time in 25 years, a new pathway for biosynthesis of jasmonic acid (JA) has been identified. JA production takes place via 12-oxo-phytodienoic acid (OPDA) including reduction by OPDA reductases (OPRs). A loss-of-function allele, opr3-3, revealed an OPR3-independent pathway converting OPDA to JA.
Publikation

Wasternack, C.; Kombrink, E.; Jasmonates: Structural Requirements for Lipid-Derived Signals Active in Plant Stress Responses and Development ACS Chem. Biol. 5, 63-77, (2010) DOI: 10.1021/cb900269u

Jasmonates are lipid-derived signals that mediate plant stress responses and development processes. Enzymes participating in biosynthesis of jasmonic acid (JA) (1, 2) and components of JA signaling have been extensively characterized by biochemical and molecular-genetic tools. Mutants of Arabidopsis and tomato have helped to define the pathway for synthesis of jasmonoyl-isoleucine (JA-Ile), the active form of JA, and to identify the F-box protein COI1 as central regulatory unit. However, details of the molecular mechanism of JA signaling have only recently been unraveled by the discovery of JAZ proteins that function in transcriptional repression. The emerging picture of JA perception and signaling cascade implies the SCFCOI1 complex operating as E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S-proteasome pathway, thereby allowing the transcription factor MYC2 to activate gene expression. The fact that only one particular stereoisomer, (+)-7-iso-JA-l-Ile (4), shows high biological activity suggests that epimerization between active and inactive diastereomers could be a mechanism for turning JA signaling on or off. The recent demonstration that COI1 directly binds (+)-7-iso-JA-l-Ile (4) and thus functions as JA receptor revealed that formation of the ternary complex COI1-JA-Ile-JAZ is an ordered process. The pronounced differences in biological activity of JA stereoisomers also imply strict stereospecific control of product formation along the JA biosynthetic pathway. The pathway of JA biosynthesis has been unraveled, and most of the participating enzymes are well-characterized. For key enzymes of JA biosynthesis the crystal structures have been established, allowing insight into the mechanisms of catalysis and modes of substrate binding that lead to formation of stereospecific products.
Publikation

Schneider, K.; Kienow, L.; Schmelzer, E.; Colby, T.; Bartsch, M.; Miersch, O.; Wasternack, C.; Kombrink, E.; Stuible, H.-P.; A New Type of Peroxisomal Acyl-Coenzyme A Synthetase from Arabidopsis thaliana Has the Catalytic Capacity to Activate Biosynthetic Precursors of Jasmonic Acid J. Biol. Chem. 280, 13962-13972, (2005) DOI: 10.1074/jbc.M413578200

Arabidopsis thaliana contains a large number of genes that encode carboxylic acid-activating enzymes, including nine long-chain fatty acyl-CoA synthetases, four 4-coumarate:CoA ligases (4CL), and 25 4CL-like proteins of unknown biochemical function. Because of their high structural and sequence similarity with bona fide 4CLs and their highly hydrophobic putative substrate-binding pockets, the 4CL-like proteins At4g05160 and At5g63380 were selected for detailed analysis. Following heterologous expression, the purified proteins were subjected to a large scale screen to identify their preferred in vitro substrates. This study uncovered a significant activity of At4g05160 with medium-chain fatty acids, medium-chain fatty acids carrying a phenyl substitution, long-chain fatty acids, as well as the jasmonic acid precursors 12-oxo-phytodienoic acid and 3-oxo-2-(2′-pentenyl)-cyclopentane-1-hexanoic acid. The closest homolog of At4g05160, namely At5g63380, showed high activity with long-chain fatty acids and 12-oxo-phytodienoic acid, the latter representing the most efficiently converted substrate. By using fluorescent-tagged variants, we demonstrated that both 4CL-like proteins are targeted to leaf peroxisomes. Collectively, these data demonstrate that At4g05160 and At5g63380 have the capacity to contribute to jasmonic acid biosynthesis by initiating the β-oxidative chain shortening of its precursors.
Publikation

Gidda, S. K.; Miersch, O.; Levitin, A.; Schmidt, J.; Wasternack, C.; Varin, L.; Biochemical and Molecular Characterization of a Hydroxyjasmonate Sulfotransferase from Arabidopsis thaliana J. Biol. Chem. 278, 17895-17900, (2003) DOI: 10.1074/jbc.M211943200

12-Hydroxyjasmonate, also known as tuberonic acid, was first isolated from Solanum tuberosum and was shown to have tuber-inducing properties. It is derived from the ubiquitously occurring jasmonic acid, an important signaling molecule mediating diverse developmental processes and plant defense responses. We report here that the gene AtST2a from Arabidopsis thaliana encodes a hydroxyjasmonate sulfotransferase. The recombinant AtST2a protein was found to exhibit strict specificity for 11- and 12-hydroxyjasmonate with Km values of 50 and 10 μm, respectively. Furthermore, 12-hydroxyjasmonate and its sulfonated derivative are shown to be naturally occurring inA. thaliana. The exogenous application of methyljasmonate to A. thaliana plants led to increased levels of both metabolites, whereas treatment with 12-hydroxyjasmonate led to increased level of 12-hydroxyjasmonate sulfate without affecting the endogenous level of jasmonic acid. AtST2a expression was found to be induced following treatment with methyljasmonate and 12-hydroxyjasmonate. In contrast, the expression of the methyljasmonate-responsive gene Thi2.1, a marker gene in plant defense responses, is not induced upon treatment with 12-hydroxyjasmonate indicating the existence of independent signaling pathways responding to jasmonic acid and 12-hydroxyjasmonic acid. Taken together, the results suggest that the hydroxylation and sulfonation reactions might be components of a pathway that inactivates excess jasmonic acid in plants. Alternatively, the function of AtST2a might be to control the biological activity of 12-hydroxyjasmonic acid.
Publikation

Schilling, S.; Niestroj, A. J.; Rahfeld, J.-U.; Hoffmann, T.; Wermann, M.; Zunkel, K.; Wasternack, C.; Demuth, H.-U.; Identification of Human Glutaminyl Cyclase as a Metalloenzyme J. Biol. Chem. 278, 49773-49779, (2003) DOI: 10.1074/jbc.M309077200

Human glutaminyl cyclase (QC) was identified as a metalloenzyme as suggested by the time-dependent inhibition by the heterocyclic chelators 1,10-phenanthroline and dipicolinic acid. The effect of EDTA on QC catalysis was negligible. Inactivated enzyme could be fully restored by the addition of Zn2+ in the presence of equimolar concentrations of EDTA. Little reactivation was observed with Co2+ and Mn2+. Other metal ions such as K+, Ca2+, and Ni2+ were inactive under the same conditions. Additionally, imidazole and imidazole derivatives were identified as competitive inhibitors of QC. An initial structure activity-based inhibitor screening of imidazole-derived compounds revealed potent inhibition of QC by imidazole N-1 derivatives. Subsequent data base screening led to the identification of two highly potent inhibitors, 3-[3-(1H-imidazol-1-yl)propyl]-2-thioxoimidazolidin-4-one and 1,4-bis-(imidazol-1-yl)-methyl-2,5-dimethylbenzene, which exhibited respective Ki values of 818 ± 1 and 295 ± 5 nm. The binding properties of the imidazole derivatives were further analyzed by the pH dependence of QC inhibition. The kinetically obtained pKa values of 6.94 ± 0.02, 6.93 ± 0.03, and 5.60 ± 0.05 for imidazole, methylimidazole, and benzimidazole, respectively, match the values obtained by titrimetric pKa determination, indicating the requirement for an unprotonated nitrogen for binding to QC. Similarly, the pH dependence of the kinetic parameter Km for the QC-catalyzed conversion of H-Gln-7-ami-no-4-methylcoumarin also implies that only N-terminally unprotonated substrate molecules are bound to the active site of the enzyme, whereas turnover is not affected. The results reveal human QC as a metal-dependent transferase, suggesting that the active site-bound metal is a potential site for interaction with novel, highly potent competitive inhibitors.
Publikation

Weichert, H.; Kohlmann, M.; Wasternack, C.; Feussner, I.; Metabolic profiling of oxylipins upon sorbitol treatment in barley leaves Biochem. Soc. Trans. 28, 861-862, (2001) DOI: 10.1042/bst0280861

In barley leaves 13-lipoxygenases (LOXs) are induced by salicylate and jasmonate. Here, we analyse by metabolic profiling the accumulation of oxylipins upon sorbitol treatment. Although 13-LOX-derived products are formed and specifically directed into the reductase branch of the LOX pathway, accumulation is much later than in the cases of salicylate and jasmonate treatment. In addition, under these conditions only the accumulation of jasmonates as additional products of the LOX pathway has been found.
Publikation

Feussner, I.; Kühn, H.; Wasternack, C.; Lipoxygenase-dependent degradation of storage lipids Trends Plant Sci. 6, 268-273, (2001) DOI: 10.1016/S1360-1385(01)01950-1

Oilseed germination is characterized by the mobilization of storage lipids as a carbon source for the germinating seedling. In spite of the importance of lipid mobilization, its mechanism is only partially understood. Recent data suggest that a novel degradation mechanism is initiated by a 13-lipoxygenase during germination, using esterified fatty acids specifically as substrates. This 13-lipoxygenase reaction leads to a transient accumulation of ester lipid hydroperoxides in the storage lipids, and the corresponding oxygenated fatty acid moieties are preferentially removed by specific lipases. The free hydroperoxy fatty acids are subsequently reduced to their hydroxy derivatives, which might in turn undergo β-oxidation.
Publikation

Ziegler, J.; Stenzel, I.; Hause, B.; Maucher, H.; Hamberg, M.; Grimm, R.; Ganal, M.; Wasternack, C.; Molecular Cloning of Allene Oxide Cyclase J. Biol. Chem. 275, 19132-19138, (2000) DOI: 10.1074/jbc.M002133200

Allene oxide cyclase (EC 5.3.99.6) catalyzes the stereospecific cyclization of an unstable allene oxide to (9S,13S)-12-oxo-(10,15Z)-phytodienoic acid, the ultimate precursor of jasmonic acid. This dimeric enzyme has previously been purified, and two almost identical N-terminal peptides were found, suggesting allene oxide cyclase to be a homodimeric protein. Furthermore, the native protein was N-terminally processed. Using degenerate primers, a polymerase chain reaction fragment could be generated from tomato, which was further used to isolate a full-length cDNA clone of 1 kilobase pair coding for a protein of 245 amino acids with a molecular mass of 26 kDa. Whereas expression of the whole coding region failed to detect allene oxide cyclase activity, a 5′-truncated protein showed high activity, suggesting that additional amino acids impair the enzymatic function. Steric analysis of the 12-oxophytodienoic acid formed by the recombinant enzyme revealed exclusive (>99%) formation of the 9S,13Senantiomer. Exclusive formation of this enantiomer was also found in wounded tomato leaves. Southern analysis and genetic mapping revealed the existence of a single gene for allene oxide cyclase located on chromosome 2 of tomato. Inspection of the N terminus revealed the presence of a chloroplastic transit peptide, and the location of allene oxide cyclase protein in that compartment could be shown by immunohistochemical methods. Concomitant with the jasmonate levels, the accumulation of allene oxide cyclase mRNA was transiently induced after wounding of tomato leaves.
IPB Mainnav Search