zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 4 von 4.

Publikation

Wasternack, C.; Forner, S.; Strnad, M.; Hause, B.; Jasmonates in flower and seed development Biochimie 95, 79-85, (2013) DOI: 10.1016/j.biochi.2012.06.005

Jasmonates are ubiquitously occurring lipid-derived signaling compounds active in plant development and plant responses to biotic and abiotic stresses. Upon environmental stimuli jasmonates are formed and accumulate transiently. During flower and seed development, jasmonic acid (JA) and a remarkable number of different metabolites accumulate organ- and tissue specifically. The accumulation is accompanied with expression of jasmonate-inducible genes. Among these genes there are defense genes and developmentally regulated genes. The profile of jasmonate compounds in flowers and seeds covers active signaling molecules such as JA, its precursor 12-oxophytodienoic acid (OPDA) and amino acid conjugates such as JA-Ile, but also inactive signaling molecules occur such as 12-hydroxy-JA and its sulfated derivative. These latter compounds can occur at several orders of magnitude higher level than JA. Metabolic conversion of JA and JA-Ile to hydroxylated compounds seems to inactivate JA signaling, but also specific functions of jasmonates in flower and seed development were detected. In tomato OPDA is involved in embryo development. Occurrence of jasmonates, expression of JA-inducible genes and JA-dependent processes in flower and seed development will be discussed.
Publikation

Weichert, H.; Kohlmann, M.; Wasternack, C.; Feussner, I.; Metabolic profiling of oxylipins upon sorbitol treatment in barley leaves Biochem. Soc. Trans. 28, 861-862, (2001) DOI: 10.1042/bst0280861

In barley leaves 13-lipoxygenases (LOXs) are induced by salicylate and jasmonate. Here, we analyse by metabolic profiling the accumulation of oxylipins upon sorbitol treatment. Although 13-LOX-derived products are formed and specifically directed into the reductase branch of the LOX pathway, accumulation is much later than in the cases of salicylate and jasmonate treatment. In addition, under these conditions only the accumulation of jasmonates as additional products of the LOX pathway has been found.
Publikation

Weichert, H.; Kolbe, A.; Wasternack, C.; Feussner, I.; Formation of 4-hydroxy-2-alkenals in barley leaves Biochem. Soc. Trans. 28, 850-851, (2000) DOI: 10.1042/bst0280850

In barley leaves 13-lipoxygenases are induced by jasmonates. This leads to induction of lipid peroxidation. Here we show by in vitro studies that these processes may further lead to autoxidative formation of (2E)-4-hydroxy-2-hexenal from (3Z)-hexenal.
Publikation

Kogel, K.-H.; Ortel, B.; Jarosch, B.; Atzorn, R.; Schiffer, R.; Wasternack, C.; Resistance in barley against the powdery mildew fungus (Erysiphe graminis f.sp.hordei) is not associated with enhanced levels of endogenous jasmonates Eur. J. Plant Pathol. 101, 319-332, (1995) DOI: 10.1007/BF01874788

Onset of acquired resistance of barley (Hordeum vulgare) chemically induced by 2,6-dichloroisonicotinic acid (DCINA) correlated with the accumulation of mRNA homologous to cDNA pHvJ256 which codes for a soluble leaf-thionin with a Mr. of 6 kDa [Wasternacket al., 1994a]. In the present work, we extend this finding by showing that the thionin transcript also accumulated following treatment of barley with the resistance-inducing compounds 3,5-dichlorosalicylic acid (DCSA), salicylic acid (SA), and an extract fromBacillus subtilis. The polypeptide showed antifungal activity against the biotrophic cereal pathogensErysiphe graminis f.sp.hordei andPuccinia graminis f.sp.tritici which may indicate a possible role in the mechanism of acquired resistance in barley. A thionin transcript hybridizing to pHvJ256 accumulated also in response to application of jasmonates, or treatments that elevated endogenous amounts of the plant growth substance, pointing to the possibility that signaling mediating defense responses in barley involves jasmonates. However, a topical spray application of jasmonic acid (JA) or jasmonate methyl ester (JM) did not protect barley leaves against infection byE. graminis. Performing a kinetic analysis by an enzyme immunoassay specific for (−)-JA, (−)-JM, and its amino acid conjugates, accumulation of jasmonates was detected in osmotically stressed barley but not at the onset of chemically induced or genetically based resistance governed by the powdery mildew resistance genesMlg, Mla 12, ormlo 5. Furthermore, the jasmonate-inducible proteins JIP-23 and JIP-60 were strongly induced following JM- but not DCINA-treatment or inoculation withE. graminis. Hence, in barley, no indications were found in favour for the previously proposed model of a lipid-based signaling pathway via jasmonates mediating expression of resistance in plants against pathogens.
IPB Mainnav Search