zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 17.

Bücher und Buchkapitel

Wasternack, C.; Jasmonates: Synthesis, Metabolism, Signal Transduction and Action (2016) DOI: 10.1002/9780470015902.a0020138.pub2

Jasmonic acid and other fatty‐acid‐derived compounds called oxylipins are signals in stress responses and development of plants. The receptor complex, signal transduction components as well as repressors and activators in jasmonate‐induced gene expression have been elucidated. Different regulatory levels and cross‐talk with other hormones are responsible for the multiplicity of plant responses to environmental and developmental cues.
Bücher und Buchkapitel

Wasternack, C.; Jasmonates in Plant Growth and Stress Responses (Tran, L.-S. P. & Pal, S., eds.). 221-263, (2014) ISBN: 978-1-4939-0491-4 DOI: 10.1007/978-1-4939-0491-4_8

Jasmonates are lipid-derived compounds which are signals in plant stress responses and development. They are synthesized in chloroplasts and peroxisomes. An endogenous rise occurs upon environmental stimuli or in distinct stages of development such as that of anthers and trichomes or in root growth. Hydroxylation, carboxylation, glucosylation, sulfation, methylation, or conjugation of jasmonic acid (JA) leads to numerous metabolites. Many of them are at least partially biologically inactive. The most bioactive JA is the (+)-7-iso-JA–isoleucine conjugate. Its perception takes place by the SCFCOI1-JAZ-co-receptor complex. At elevated levels of JAs, negative regulators such as JAZ, or JAV are subjected to proteasomal degradation, thereby allowing positively acting transcription factors of the MYC or MYB family to switch on JA-induced gene expression. In case of JAM negative regulation takes place by anatagonism to MYC2. JA and COI1 are dominant signals in gene expression after wounding or in response to necrotrophic pathogens. Cross-talk to salicylic acid, ethylene, auxin, and other hormones occurs. Growth is inhibited by JA, thereby counteracting the growth stimulation by gibberellic acid. Senescence, trichome formation, arbuscular mycorrhiza, and formation of many secondary metabolites are induced by jasmonates. Effects in cold acclimation; in intercropping; during response to herbivores, nematodes, or necrotrophic pathogens; in pre- and post-harvest; in crop quality control; and in biosynthesis of secondary compounds led to biotechnological and agricultural applications.
Bücher und Buchkapitel

Wasternack, C.; Jasmonates in Stress, Growth, and Development 91-118, (2010) ISBN: 9783527628964 DOI: 10.1002/9783527628964.ch5

This chapter contains sections titled:IntroductionJA BiosynthesisJA MetabolismBound OPDA – ArabidopsidesMutants of JA Biosynthesis and SignalingCOI1–JAZ–JA‐Ile‐Mediated JA SignalingTranscription Factors Involved in JA SignalingJasmonates and Oxylipins in DevelopmentConclusionsAcknowledgmentsReferences
Bücher und Buchkapitel

Dorka, R.; Miersch, O.; Hause, B.; Weik, P.; Wasternack, C.; Chronobiologische Phänomene und Jasmonatgehalt bei Viscum album L. 49-66, (2009)

0
Bücher und Buchkapitel

Wasternack, C.; Hause, B.; Stenzel, I.; Goetz, S.; Feussner, I.; Miersch, O.; Jasmonate signaling in tomato – The input of tissue-specific occurrence of allene oxide cyclase and JA metabolites (Benning C., Ollrogge, J.). 107-111, (2007)

0
Bücher und Buchkapitel

Wasternack, C.; Jasmonates—Biosynthesis and Role in Stress Responses and Developmental Processes 143-155, (2004) DOI: 10.1016/B978-012520915-1/50012-6

This chapter presents jasmonates and their related compounds and discusses jasmonate-induced alteration of gene expression. Jasmonates exerts two different changes in gene expression— decrease in the expression of nuclear- and chloroplast-encoded genes and increase in the expression of specific genes. Jasmonates are shown to alter sink-source relationships such as JA promotes formation of the N-rich vegetative storage proteins—VSPα and VSPβ—of soybean, including reallocation in pod filling. In addition to such nutrient reallocation to other parts of the plant, jasmonates cause decreases in photosynthesis and chlorophyll content, the most significant manifestations of senescence in leaves. The rise of endogenous jasmonates upon stress or exogenous treatment with jasmonates correlates in time with the expression of various genes. The promotion of senescence by jasmonates is counteracted by cytokinins. The capacity of jasmonates to down regulate photosynthetic genes may also be one determinant in the onset of senescence.
Bücher und Buchkapitel

Weichert, H.; Maucher, H.; Hornung, E.; Wasternack, C.; Feussner, I.; Shift in Fatty Acid and Oxylipin Pattern of Tomato Leaves Following Overexpression of the Allene Oxide Cyclase 275-278, (2003) DOI: 10.1007/978-94-017-0159-4_64

Polyunsaturated fatty acids (PUFAs) are a source of numerous oxidation products, the oxylipins. In leaves, α-linolenic acid (α-LeA) is the preferential substrate for lipid peroxidation reactions. This reaction may be catalyzed either by a 9-lipoxygenase (9-LOX) or by a 13-LOX and oxygen is inserted regioselectively as well as stereospecifically leading to formation of 13S- or 9S-hydroperoxy octadecatrienoic acid (13-/9-HPOT; Brash, 1999). At least, seven different enzyme families or reaction branches within the LOX pathway can use these HPOTs or other hydroperoxy PUFAs leading to (i) keto-PUFAs (LOX); (ii) epoxy hydroxy-PUFAs (epoxy alcohol synthase, EAS); (iii) octadecanoids and jasmonates (allene oxide synthase, AOS); (iv) leaf aldehydes and leaf alcohols (hydroperoxide lyase, HPL); (v) hydroxy PUFAs (reductase); (vi) divinyl ether PUFAs (divinyl ether synthase, DES); and (vii) epoxy- or dihydrodiol-PUFAs (peroxygenase, PDX; Fig. 1; Feussner and Wasternack, 2002).
Bücher und Buchkapitel

Stenzel, I.; Hause, B.; Feussner, I.; Wasternack, C.; Transcriptional Activation of Jasmonate Biosynthesis Enzymes is not Reflected at Protein Level 267-270, (2003) DOI: 10.1007/978-94-017-0159-4_62

Jasmonic acid (JA) and its precursor 12-oxo phytodienoic acid (OPDA) are lipid-derived signals in plant stress responses and development (Wasternack and Hause, 2002). Within the wound-response pathway of tomato, a local response of expression of defense genes such as the proteinase inhibitor 2 gene (PIN2) is preceded by a rise in JA (Herde et al., 1996; Howe et al., 1996) and ethylene (O’Donnell et al., 1996). Mutants affected in JA biosynthesis such as defl (Howe et al., 1996) or spr-2 (Li et al., 2002) clearly indicated that JA biosynthesis is an ultimate part of wound signaling. It is less understood, however, how the rise in JA is regulated.
Publikation

Weichert, H.; Kohlmann, M.; Wasternack, C.; Feussner, I.; Metabolic profiling of oxylipins upon sorbitol treatment in barley leaves Biochem. Soc. Trans. 28, 861-862, (2001) DOI: 10.1042/bst0280861

In barley leaves 13-lipoxygenases (LOXs) are induced by salicylate and jasmonate. Here, we analyse by metabolic profiling the accumulation of oxylipins upon sorbitol treatment. Although 13-LOX-derived products are formed and specifically directed into the reductase branch of the LOX pathway, accumulation is much later than in the cases of salicylate and jasmonate treatment. In addition, under these conditions only the accumulation of jasmonates as additional products of the LOX pathway has been found.
Publikation

Weichert, H.; Kolbe, A.; Wasternack, C.; Feussner, I.; Formation of 4-hydroxy-2-alkenals in barley leaves Biochem. Soc. Trans. 28, 850-851, (2000) DOI: 10.1042/bst0280850

In barley leaves 13-lipoxygenases are induced by jasmonates. This leads to induction of lipid peroxidation. Here we show by in vitro studies that these processes may further lead to autoxidative formation of (2E)-4-hydroxy-2-hexenal from (3Z)-hexenal.
IPB Mainnav Search