zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Zeige Ergebnisse 1 bis 2 von 2.

Publikation

Wasternack, C.; Xie, D.; The genuine ligand of a jasmonic acid receptor: Improved analysis of jasmonates is now required Plant Signal Behav. 5, 337-340, (2010) DOI: 10.4161/psb.5.4.11574

Jasmonic acid (JA), its metabolites, such as the methyl ester or amino acid conjugates as well as its precursor 12-oxophytodienoic acid (OPDA) are lipid-derived signals. JA, OPDA and JA-amino acid conjugates are known to function as signals in plant stress responses and development. More recently, formation of JA-amino acid conjugates and high biological activity of JA-Isoleucine (JA-Ile) were found to be essential in JA signalling. A breakthrough was the identification of JAZ proteins which interact with the F-box protein COI1 if JA-Ile is bound. This interaction leads to proteasomal degradation of JAZs being negative regulators of JA-induced transcription. Surprisingly, a distinct stereoisomer of JA-Ile, the (+)-7-iso-JA-Ile ((3R,7S) form) is most active. Coronatine, a bacterial phytotoxine with an identical stereochemistry at the cyclopentanone ring, has a similar bioactivity . This was explained by the recent identification of COI1 as the JA receptor and accords well with molecular modelling studies. Whereas over the last two decades JA was quantified to describe any JA dependent process, now we have to take into account a distinct stereoisomer of JA-Ile. Until recently a quantitative analysis of (+)-7-iso-JA-Ile was missing presumable due to its equilibration to (-)-JA-Ile. Now such an analysis was achieved. These aspects will be discussed based on our new knowledge on JA perception and signalling.
Publikation

Stumpe, M.; Göbel, C.; Faltin, B.; Beike, A. K.; Hause, B.; Himmelsbach, K.; Bode, J.; Kramell, R.; Wasternack, C.; Frank, W.; Reski, R.; Feussner, I.; The moss Physcomitrella patens contains cyclopentenones but no jasmonates: mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology New Phytol. 188, 740-749, (2010) DOI: 10.1111/j.1469-8137.2010.03406.x

Two cDNAs encoding allene oxide cyclases (PpAOC1, PpAOC2), key enzymes in the formation of jasmonic acid (JA) and its precursor (9S,13S)‐12‐oxo‐phytodienoic acid (cis‐(+)‐OPDA), were isolated from the moss Physcomitrella patens.Recombinant PpAOC1 and PpAOC2 show substrate specificity against the allene oxide derived from 13‐hydroperoxy linolenic acid (13‐HPOTE); PpAOC2 also shows substrate specificity against the allene oxide derived from 12‐hydroperoxy arachidonic acid (12‐HPETE).In protonema and gametophores the occurrence of cis‐(+)‐OPDA, but neither JA nor the isoleucine conjugate of JA nor that of cis‐(+)‐OPDA was detected.Targeted knockout mutants for PpAOC1 and for PpAOC2 were generated, while double mutants could not be obtained. The ΔPpAOC1 and ΔPpAOC2 mutants showed reduced fertility, aberrant sporophyte morphology and interrupted sporogenesis.
IPB Mainnav Search