zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 3 von 3.

Publikation

Wasternack, C.; Feussner, I.; The Oxylipin Pathways: Biochemistry and Function Annu. Rev. Plant Biol. 69, 363-386, (2018) DOI: 10.1146/annurev-arplant-042817-040440

Plant oxylipins form a constantly growing group of signaling molecules that comprise oxygenated fatty acids and metabolites derived therefrom. In the last decade, the understanding of biosynthesis, metabolism, and action of oxylipins, especially jasmonates, has dramatically improved. Additional mechanistic insights into the action of enzymes and insights into signaling pathways have been deepened for jasmonates. For other oxylipins, such as the hydroxy fatty acids, individual signaling properties and cross talk between different oxylipins or even with additional phytohormones have recently been described. This review summarizes recent understanding of the biosynthesis, regulation, and function of oxylipins.
Publikation

Wasternack, C.; Strnad, M.; Jasmonates: News on Occurrence, Biosynthesis, Metabolism and Action of an Ancient Group of Signaling Compounds Int. J. Mol. Sci. 19, 2539, (2018) DOI: 10.3390/ijms19092539

Jasmonic acid (JA) and its related derivatives are ubiquitously occurring compounds of land plants acting in numerous stress responses and development. Recent studies on evolution of JA and other oxylipins indicated conserved biosynthesis. JA formation is initiated by oxygenation of α-linolenic acid (α-LeA, 18:3) or 16:3 fatty acid of chloroplast membranes leading to 12-oxo-phytodienoic acid (OPDA) as intermediate compound, but in Marchantiapolymorpha and Physcomitrellapatens, OPDA and some of its derivatives are final products active in a conserved signaling pathway. JA formation and its metabolic conversion take place in chloroplasts, peroxisomes and cytosol, respectively. Metabolites of JA are formed in 12 different pathways leading to active, inactive and partially active compounds. The isoleucine conjugate of JA (JA-Ile) is the ligand of the receptor component COI1 in vascular plants, whereas in the bryophyte M. polymorpha COI1 perceives an OPDA derivative indicating its functionally conserved activity. JA-induced gene expressions in the numerous biotic and abiotic stress responses and development are initiated in a well-studied complex regulation by homeostasis of transcription factors functioning as repressors and activators.
Publikation

Wasternack, C.; Hause, B.; A Bypass in Jasmonate Biosynthesis – the OPR3-independent Formation Trends Plant Sci. 23, 276-279, (2018) DOI: 10.1016/j.tplants.2018.02.011

For the first time in 25 years, a new pathway for biosynthesis of jasmonic acid (JA) has been identified. JA production takes place via 12-oxo-phytodienoic acid (OPDA) including reduction by OPDA reductases (OPRs). A loss-of-function allele, opr3-3, revealed an OPR3-independent pathway converting OPDA to JA.
IPB Mainnav Search