zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 5 von 5.

Publikation

Stenzel, I.; Ischebeck, T.; Quint, M.; Heilmann, I.; Variable regions of PI4P 5-kinases direct PtdIns(4,5)P2 toward alternative regulatory functions in tobacco pollen tubes Front. Plant Sci. 2, 114, (2012) DOI: 10.3389/fpls.2011.00114

The apical plasma membrane of pollen tubes contains different PI4P 5-kinases that all produce phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] but exert distinct cellular effects. In the present example, overexpression of Arabidopsis AtPIP5K5 or tobacco NtPIP5K6-1 caused growth defects previously attributed to increased pectin secretion. In contrast, overexpression of Arabidopsis AtPIP5K2 caused apical tip swelling implicated in altering actin fine structure in the pollen tube apex. AtPIP5K5, NtPIP5K6-1, and AtPIP5K2 share identical domain structures. Domains required for correct membrane association of the enzymes were identified by systematic deletion of N-terminal domains and subsequent expression of fluorescence-tagged enzyme truncations in tobacco pollen tubes. A variable linker region (Lin) contained in all PI4P 5-kinase isoforms of subfamily B, but not conserved in sequence, was recognized to be necessary for correct subcellular localization of AtPIP5K5, NtPIP5K6-1, and AtPIP5K2. Deletion of N-terminal domains including the Lin domain did not impair catalytic activity of recombinant AtPIP5K5, NtPIP5K6-1, or AtPIP5K2 in vitro; however, the presence of the Lin domain was necessary for in vivo effects on pollen tube growth upon overexpression of truncated enzymes. Overexpression of catalytically inactive variants of AtPIP5K5, NtPIP5K6-1, or AtPIP5K2 did not influence pollen tube growth, indicating that PtdIns(4,5)P2 production rather than structural properties of PI4P 5-kinases was relevant for the manifestation of growth phenotypes. When Lin domains were swapped between NtPIP5K6-1 and AtPIP5K2 and the chimeric enzymes overexpressed in pollen tubes, the chimeras reciprocally gained the capabilities to invoke tip swelling or secretion phenotypes, respectively. The data indicate that the Lin domain directed the enzymes into different regulatory contexts, possibly contributing to channeling of PtdIns(4,5)P2 at the interface of secretion and actin cytoskeleton.
Publikation

Stenzel, I.; Otto, M.; Delker, C.; Kirmse, N.; Schmidt, D.; Miersch, O.; Hause, B.; Wasternack, C.; ALLENE OXIDE CYCLASE (AOC) gene family members of Arabidopsis thaliana: tissue- and organ-specific promoter activities and in vivo heteromerization J. Exp. Bot. 63, 6125-6138, (2012) DOI: 10.1093/jxb/ers261

Jasmonates are important signals in plant stress responses and plant development. An essential step in the biosynthesis of jasmonic acid (JA) is catalysed by ALLENE OXIDE CYCLASE (AOC) which establishes the naturally occurring enantiomeric structure of jasmonates. In Arabidopsis thaliana, four genes encode four functional AOC polypeptides (AOC1, AOC2, AOC3, and AOC4) raising the question of functional redundancy or diversification. Analysis of transcript accumulation revealed an organ-specific expression pattern, whereas detailed inspection of transgenic lines expressing the GUS reporter gene under the control of individual AOC promoters showed partially redundant promoter activities during development: (i) In fully developed leaves, promoter activities of AOC1, AOC2, and AOC3 appeared throughout all leaf tissue, but AOC4 promoter activity was vascular bundle-specific; (ii) only AOC3 and AOC4 showed promoter activities in roots; and (iii) partially specific promoter activities were found for AOC1 and AOC4 in flower development. In situ hybridization of flower stalks confirmed the GUS activity data. Characterization of single and double AOC loss-of-function mutants further corroborates the hypothesis of functional redundancies among individual AOCs due to a lack of phenotypes indicative of JA deficiency (e.g. male sterility). To elucidate whether redundant AOC expression might contribute to regulation on AOC activity level, protein interaction studies using bimolecular fluorescence complementation (BiFC) were performed and showed that all AOCs can interact among each other. The data suggest a putative regulatory mechanism of temporal and spatial fine-tuning in JA formation by differential expression and via possible heteromerization of the four AOCs.
Publikation

Wasternack, C.; Goetz, S.; Hellwege, A.; Forner, S.; Strnad, M.; Hause, B.; Another JA/COI1-independent role of OPDA detected in tomato embryo development Plant Signal Behav. 7, 1349-1353, (2012) DOI: 10.4161/psb.21551

Jasmonates (JAs) are ubiquitously occurring signaling compounds in plants formed in response to biotic and abiotic stress as well as in development. (+)-7-iso-jasmonoyl isoleucine, the bioactive JA, is involved in most JA-dependent processes mediated by the F-box protein COI1 in a proteasome-dependent manner. However, there is an increasing number of examples, where the precursor of JA biosynthesis, cis-(+)-12-oxophytodienoic acid (OPDA) is active in a JA/COI1-independent manner. Here, we discuss those OPDA-dependent processes, thereby giving emphasis on tomato embryo development. Recent data on seed coat-generated OPDA and its role in embryo development is discussed based on biochemical and genetic evidences.
Publikation

Goetz, S.; Hellwege, A.; Stenzel, I.; Kutter, C.; Hauptmann, V.; Forner, S.; McCaig, B.; Hause, G.; Miersch, O.; Wasternack, C.; Hause, B.; Role of cis-12-Oxo-Phytodienoic Acid in Tomato Embryo Development Plant Physiol. 158, 1715-1727, (2012) DOI: 10.1104/pp.111.192658

Oxylipins including jasmonates are signaling compounds in plant growth, development, and responses to biotic and abiotic stresses. In Arabidopsis (Arabidopsis thaliana) most mutants affected in jasmonic acid (JA) biosynthesis and signaling are male sterile, whereas the JA-insensitive tomato (Solanum lycopersicum) mutant jai1 is female sterile. The diminished seed formation in jai1 together with the ovule-specific accumulation of the JA biosynthesis enzyme allene oxide cyclase (AOC), which correlates with elevated levels of JAs, suggest a role of oxylipins in tomato flower/seed development. Here, we show that 35S::SlAOC-RNAi lines with strongly reduced AOC in ovules exhibited reduced seed set similarly to the jai1 plants. Investigation of embryo development of wild-type tomato plants showed preferential occurrence of AOC promoter activity and AOC protein accumulation in the developing seed coat and the embryo, whereas 12-oxo-phytodienoic acid (OPDA) was the dominant oxylipin occurring nearly exclusively in the seed coat tissues. The OPDA- and JA-deficient mutant spr2 was delayed in embryo development and showed an increased programmed cell death in the developing seed coat and endosperm. In contrast, the mutant acx1a, which accumulates preferentially OPDA and residual amount of JA, developed embryos similar to the wild type, suggesting a role of OPDA in embryo development. Activity of the residual amount of JA in the acx1a mutant is highly improbable since the known reproductive phenotype of the JA-insensitive mutant jai1 could be rescued by wound-induced formation of OPDA. These data suggest a role of OPDA or an OPDA-related compound for proper embryo development possibly by regulating carbohydrate supply and detoxification.
Publikation

Brandt, R.; Salla-Martret, M.; Bou-Torrent, J.; Musielak, T.; Stahl, M.; Lanz, C.; Ott, F.; Schmid, M.; Greb, T.; Schwarz, M.; Choi, S.-B.; Barton, M. K.; Reinhart, B. J.; Liu, T.; Quint, M.; Palauqui, J.-C.; Martínez-García, J. F.; Wenkel, S.; Genome-wide binding-site analysis of REVOLUTA reveals a link between leaf patterning and light-mediated growth responses Plant J. 72, 31-42, (2012) DOI: 10.1111/j.1365-313X.2012.05049.x

Unlike the situation in animals, the final morphology of the plant body is highly modulated by the environment. During Arabidopsis development, intrinsic factors provide the framework for basic patterning processes. CLASS III HOMEODOMAIN LEUCINE ZIPPER (HD‐ZIPIII) transcription factors are involved in embryo, shoot and root patterning. During vegetative growth HD‐ZIPIII proteins control several polarity set‐up processes such as in leaves and the vascular system. We have identified several direct target genes of the HD‐ZIPIII transcription factor REVOLUTA (REV) using a chromatin immunoprecipitation/DNA sequencing (ChIP‐Seq) approach. This analysis revealed that REV acts upstream of auxin biosynthesis and affects directly the expression of several class II HD‐ZIP transcription factors that have been shown to act in the shade‐avoidance response pathway. We show that, as well as involvement in basic patterning, HD‐ZIPIII transcription factors have a critical role in the control of the elongation growth that is induced when plants experience shade. Leaf polarity is established by the opposed actions of HD‐ZIPIII and KANADI transcription factors. Finally, our study reveals that the module that consists of HD‐ZIPIII/KANADI transcription factors controls shade growth antagonistically and that this antagonism is manifested in the opposed regulation of shared target genes.
IPB Mainnav Search