zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 72.

Publikation

Khalil, S.; Strah, R.; Lodovici, A.; Vojta, P.; Berardinis, F. D.; Ziegler, J.; Novak, M. P.; Zanin, L.; Tomasi, N.; Forneck, A.; Griesser, M.; The activation of iron deficiency responses of grapevine rootstocks is dependent to the availability of the nitrogen forms BMC Plant Biol. 24, 218, (2024) DOI: 10.1186/s12870-024-04906-y

Background  In viticulture, iron (Fe) chlorosis is a common abiotic stress that impairs plant development and leads to yield and quality losses. Under low availability of the metal, the applied N form (nitrate and ammonium) can play a role in promoting or mitigating Fe deficiency stresses. However, the processes involved are not clear in grapevine. Therefore, the aim of this study was to investigate the response of two grapevine rootstocks to the interaction between N forms and Fe uptake. This process was evaluated in a hydroponic experiment using two ungrafted grapevine rootstocks Fercal (Vitis berlandieri x V. vinifera) tolerant to deficiency induced Fe chlorosis and Couderc 3309 (V. riparia x V. rupestris) susceptible to deficiency induced Fe chlorosis. Results  The results could differentiate Fe deficiency effects, N-forms effects, and rootstock effects. Interveinal chlorosis of young leaves appeared earlier on 3309 C from the second week of treatment with NO3−/NH4+ (1:0)/-Fe, while Fercal leaves showed less severe symptoms after four weeks of treatment, corresponding to decreased chlorophyll concentrations lowered by 75% in 3309 C and 57% in Fercal. Ferric chelate reductase (FCR) activity was by trend enhanced under Fe deficiency in Fercal with both N combinations, whereas 3309 C showed an increase in FCR activity under Fe deficiency only with NO3−/NH4+ (1:1) treatment. With the transcriptome analysis, Gene Ontology (GO) revealed multiple biological processes and molecular functions that were significantly regulated in grapevine rootstocks under Fe-deficient conditions, with more genes regulated in Fercal responses, especially when both forms of N were supplied. Furthermore, the expression of genes involved in the auxin and abscisic acid metabolic pathways was markedly increased by the equal supply of both forms of N under Fe deficiency conditions. In addition, changes in the expression of genes related to Fe uptake, regulation, and transport reflected the different responses of the two grapevine rootstocks to different N forms. Conclusions  Results show a clear contribution of N forms to the response of the two grapevine rootstocks under Fe deficiency, highlighting the importance of providing both N forms (nitrate and ammonium) in an appropriate ratio in order to ease the rootstock responses to Fe deficiency.
Preprints

Mik, V.; Poslíšil, T.; Brunoni, F.; Grúz, J.; Nožková, V.; Wasternack, C.; Miersch, O.; Strnad, M.; Floková, K.; Novák, O.; Široká, J.; Synthetic and analytical routes to the L-amino acid conjugates of cis-OPDA and their identification and quantification in plants ChemRxiv (2023) DOI: 10.26434/chemrxiv-2023-qlzj4

Cis-(+)-12-oxophytodienoic acid (cis-(+)-OPDA) is a bioactive jasmonate, a precursor of jasmonic acid, which also displays signaling activity on its own. Modulation of cis-(+)-OPDA actions may be carried out via biotransformation leading to metabolites of various functions, similar to other phytohormones. This work introduces a methodology for the synthesis of racemic cis-OPDA conjugates with amino acids (OPDA-aa) and their deuterium-labeled analogs, which enables the identification and accurate quantification of these compounds in plants. We have developed a highly sensitive liquid chromatography-tandem mass spectrometry-based method for the reliable determination of seven OPDA-aa (OPDA-Alanine, OPDA-Aspartate, OPDA-Glutamate, OPDA-Glycine, OPDA-Isoleucine, OPDA-Phenylalanine, and OPDA-Valine) from minute amount of plant material. The extraction from 10 mg of fresh plant tissue by 10% aqueous methanol followed by single-step sample clean-up on hydrophilic–lipophilic balanced columns prior to final analysis was optimized. The method was validated in terms of accuracy and precision, and the method parameters such as process efficiency, recovery and matrix effects were evaluated. In mechanically wounded 30-day-old Arabidopsis thaliana leaves, five endogenous (+)-OPDA-aa were identified and their endogenous levels reached a maximum of pmol/g. The time-course accumulation revealed a peak 60 min after the wounding, roughly corresponding to the accumulation of cis-(+)-OPDA. Current synthetic and analytical methodologies support studies on cis-(+)-OPDA conjugation with amino acids and research into the biological significance of these metabolites in plants.
Publikation

Mik, V.; Pospíšil, T.; Brunoni, F.; Grúz, J.; Nožková, V.; Wasternack, C.; Miersch, O.; Strnad, M.; Floková, K.; Novák, O.; Široká, J.; Synthetic and analytical routes to the L-amino acid conjugates of cis-OPDA and their identification and quantification in plants Phytochemistry 215, 113855, (2023) DOI: 10.1016/j.phytochem.2023.113855

Cis-(+)-12-oxophytodienoic acid (cis-(+)-OPDA) is a bioactive jasmonate, a precursor of jasmonic acid, which also displays signaling activity on its own. Modulation of cis-(+)-OPDA actions may be carried out via biotransformation leading to metabolites of various functions. This work introduces a methodology for the synthesis of racemic cis-OPDA conjugates with amino acids (OPDA-aa) and their deuterium-labeled analogs, which enables the unambiguous identification and accurate quantification of these compounds in plants. We have developed a highly sensitive liquid chromatography-tandem mass spectrometry-based method for the reliable determination of seven OPDA-aa (OPDA-Alanine, OPDA-Aspartate, OPDA-Glutamate, OPDA-Glycine, OPDA-Isoleucine, OPDA-Phenylalanine, and OPDA-Valine) from minute amount of plant material. The extraction from 10 mg of fresh plant tissue by 10% aqueous methanol followed by single-step sample clean-up on hydrophilic–lipophilic balanced columns prior to final analysis was optimized. The method was validated in terms of accuracy and precision, and the method parameters such as process efficiency, recovery and matrix effects were evaluated. In mechanically wounded 30-day-old Arabidopsis thaliana leaves, five endogenous (+)-OPDA-aa were identified and their endogenous levels were estimated. The time-course accumulation revealed a peak 60 min after the wounding, roughly corresponding to the accumulation of cis-(+)-OPDA. Our synthetic and analytical methodologies will support studies on cis-(+)-OPDA conjugation with amino acids and research into the biological significance of these metabolites in plants.
Preprints

Bassal, M.; Majovsky, P.; Thieme, D.; Herr, T.; Abukhalaf, M.; Ayash, M.; Al Shweiki, M. R.; Proksch, C.; Hmedat, A.; Ziegler, J.; Neumann, S.; Hoehenwarter, W.; Reshaping of the Arabidopsis thaliana proteome landscape and co-regulation of proteins in development and immunity bioRxiv (2020) DOI: 10.1101/2020.03.09.978627

Proteome remodeling is a fundamental adaptive response and proteins in complex and functionally related proteins are often co-expressed. Using a deep sampling strategy we define Arabidopsis thaliana tissue core proteomes at around 10,000 proteins per tissue and absolutely quantify (copy numbers per cell) nearly 16,000 proteins throughout the plant lifecycle. A proteome wide survey of global post translational modification revealed amino acid exchanges pointing to potential conservation of translational infidelity in eukaryotes. Correlation analysis of protein abundance uncovered potentially new tissue and age specific roles of entire signaling modules regulating transcription in photosynthesis, seed development and senescence and abscission. Among others, the data suggest a potential function of RD26 and other NAC transcription factors in seed development related to desiccation tolerance as well as a possible function of Cysteine-rich Receptor-like Kinases (CRKs) as ROS sensors in senescence. All of the components of ribosome biogenesis factor (RBF) complexes were co-expressed tissue and age specifically indicating functional promiscuity in the assembly of these little described protein complexes in Arabidopsis. Treatment of seedlings with flg22 for 16 hours allowed us to characterize proteome architecture in basal immunity in detail. The results were complemented with parallel reaction monitoring (PRM) targeted proteomics, phytohormone, amino acid and transcript measurements. We obtained strong evidence of suppression of jasmonate (JA) and JA-Ile levels by deconjugation and hydroxylation via IAA-ALA RESISTANT3 (IAR3) and JASMONATE-INDUCED OXYGENASE 2 (JOX2) under the control of JASMONATE INSENSITIVE 1 (MYC2). This previously unknown regulatory switch is another part of the puzzle of the as yet understudied role of JA in pattern triggered immunity. The extensive coverage of the Arabidopsis proteome in various biological scenarios presents a rich resource to plant biologists that we make available to the community.
Publikation

Wasternack, C.; Sulfation switch in the shade Nat. Plants 6, 186-187, (2020) DOI: 10.1038/s41477-020-0620-8

Plants adjust the balance between growth and defence using photoreceptors and jasmonates. Levels of active jasmonates are reduced in a phytochrome B-dependent manner by upregulation of a 12-hydroxyjasmonate sulfotransferase, leading to increase in shade avoidance and decrease in defence.
Publikation

Bassal, M.; Abukhalaf, M.; Majovsky, P.; Thieme, D.; Herr, T.; Ayash, M.; Tabassum, N.; Al Shweiki, M. R.; Proksch, C.; Hmedat, A.; Ziegler, J.; Lee, J.; Neumann, S.; Hoehenwarter, W.; Reshaping of the Arabidopsis thaliana Proteome Landscape and Co-regulation of Proteins in Development and Immunity Mol. Plant 13, 1709-1732, (2020) DOI: 10.1016/j.molp.2020.09.024

Proteome remodeling is a fundamental adaptive response, and proteins in complexes and functionally related proteins are often co-expressed. Using a deep sampling strategy we define core proteomes of Arabidopsis thaliana tissues with around 10 000 proteins per tissue, and absolutely quantify (copy numbers per cell) nearly 16 000 proteins throughout the plant lifecycle. A proteome-wide survey of global post-translational modification revealed amino acid exchanges pointing to potential conservation of translational infidelity in eukaryotes. Correlation analysis of protein abundance uncovered potentially new tissue- and age-specific roles of entire signaling modules regulating transcription in photosynthesis, seed development, and senescence and abscission. Among others, the data suggest a potential function of RD26 and other NAC transcription factors in seed development related to desiccation tolerance as well as a possible function of cysteine-rich receptor-like kinases (CRKs) as ROS sensors in senescence. All of the components of ribosome biogenesis factor (RBF) complexes were found to be co-expressed in a tissue- and age-specific manner, indicating functional promiscuity in the assembly of these less-studied protein complexes in Arabidopsis. Furthermore, we characterized detailed proteome remodeling in basal immunity by treating Arabidopsis seeldings with flg22. Through simultaneously monitoring phytohormone and transcript changes upon flg22 treatment, we obtained strong evidence of suppression of jasmonate (JA) and JA-isoleucine (JA-Ile) levels by deconjugation and hydroxylation by IAA-ALA RESISTANT3 (IAR3) and JASMONATE-INDUCED OXYGENASE 2 (JOX2), respectively, under the control of JASMONATE INSENSITIVE 1 (MYC2), suggesting an unrecognized role of a new JA regulatory switch in pattern-triggered immunity. Taken together, the datasets generated in this study present extensive coverage of the Arabidopsis proteome in various biological scenarios, providing a rich resource available to the whole plant science community.
Publikation

Wasternack, C.; Hause, B.; The missing link in jasmonic acid biosynthesis Nat. Plants 5, 776-777, (2019) DOI: 10.1038/s41477-019-0492-y

Jasmonic acid biosynthesis starts in chloroplasts and is finalized in peroxisomes. The required export of a crucial intermediate out of the chloroplast is now shown to be mediated by a protein from the outer envelope called JASSY.
Publikation

Wasternack, C.; Termination in Jasmonate Signaling by MYC2 and MTBs Trends Plant Sci. 24, 667-669, (2019) DOI: 10.1016/j.tplants.2019.06.001

Jasmonic acid (JA) signaling can be switched off by metabolism of JA. The master regulator MYC2, interacting with MED25, has been shown to be deactivated by the bHLH transcription factors MTB1, MTB2, and MTB3. An autoregulatory negative feedback loop has been proposed for this termination in JA signaling.
Publikation

Wasternack, C.; New Light on Local and Systemic Wound Signaling Trends Plant Sci. 24, 102-105, (2019) DOI: 10.1016/j.tplants.2018.11.009

Electric signaling and Ca2+ waves were discussed to occur in systemic wound responses. Two new overlapping scenarios were identified: (i) membrane depolarization in two special cell types followed by an increase in systemic cytoplasmic Ca2+ concentration ([Ca2+]cyt), and (ii) glutamate sensed by GLUTAMATE RECEPTOR LIKE proteins and followed by Ca2+-based defense in distal leaves.
Publikation

Hussain, H.; Ziegler, J.; Mrestani, Y.; Neubert, R. H. H.; Studies of the Corneocytary Pathway Across the Stratum Corneum. Part I: Diffusion of Amino Acids Into the Isolated Corneocytes Pharmazie 74, 340-344, (2019) DOI: 10.1691/ph.2019.8098

Amino acids (AAs), important constituents of natural moisturizing factors (NMFs) of the skin are decreased in diseased conditions such as psoriasis and atopic dermatitis. No study so far investigated the uptake of AAs into isolated corneocytes (COR). The present study was performed using 19 AAs, including taurine (TAU), to measure their amount diffused into the COR and binding of these AAs to keratin. Incubation of alanine, aspartic acid, asparagine, glutamine, glutamic acid, histidine, proline, serine and TAU with the isolated COR showed uptake after 24 h of 51.6, 95.4, 98.6, 94.1, 95.6, 90.1, 94.6, 72.9 and 57.8 %, respectively, into the COR but no binding with keratin. Uptake of TAU was validated by time dependent in-vitro diffusion models 'without COR and 'with COR'. The time dependent curve fitting showed that in in-vitro diffusion model 'without COR' there was no change in the total concentration of TAU until 72 hours, while in diffusion model 'with COR' the total conc. decreased to 37.8 % after 72 hours. The Pearson's correlation coefficient 'r' between the conc. curves of both in-vitro diffusion models was -0.54 that was an evidence of significant amount of TAU uptake by the COR. AAs as part of the NMFs have a great potential to be diffused into the COR. This property of the AAs can be employed in further dermatological research on diseased or aged skin conditions with NMFs deficiency.
IPB Mainnav Search