zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 23.

Preprints

Brunoni, F.; Široká, J.; Mik, V.; Pospíšil, T.; Kralová, M.; Ament, A.; Pernisová, M.; Karady, M.; Htitich, M.; Ueda, M.; Floková, K.; Wasternack, C.; Strnad, M.; Novák, O.; Conjugation ofcis-OPDA with amino acids is a conserved pathway affectingcis-OPDA homeostasis upon stress responses (2023) DOI: 10.1101/2023.07.18.549545

Jasmonates (JAs) are a family of oxylipin phytohormones regulating plant development and growth and mediating ‘defense versus growth’ responses. The upstream JA biosynthetic precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA) has been reported to act independently of the COI1-mediated JA signaling in several stress-induced and developmental processes. However, its means of perception and metabolism are only partially understood. Furthermore, cis-OPDA, but not JA, occurs in non-vascular plant species, such as bryophytes, exhibiting specific functions in defense and development. A few years ago, a low abundant isoleucine analog of the biologically active JA-Ile, OPDA-Ile, was detected in wounded leaves of flowering plants, opening up to the possibility that conjugation of cis-OPDA to amino acids might be a relevant mechanism for cis-OPDA regulation. Here, we extended the analysis of amino acid conjugates of cis-OPDA and identified naturally occurring OPDA-Val, OPDA-Phe, OPDA-Ala, OPDA-Glu, and OPDA-Asp in response to biotic and abiotic stress in Arabidopsis. The newly identified OPDA-amino acid conjugates show cis-OPDA-related plant responses in a JAR1-dependent manner. We also discovered that the synthesis and hydrolysis of cis-OPDA amino acid conjugates are regulated by members of the amidosynthetase GH3 and the amidohydrolase ILR1/ILL families. Finally, we found that the cis-OPDA conjugative pathway already functions in non-vascular plants and gymnosperms. Thus, one level of regulation by which plants modulate cis-OPDA homeostasis is the synthesis and hydrolysis of OPDA-amino acid conjugates, which temporarily store cis-OPDA in stress responses.
Publikation

Wasternack, C.; Strnad, M.; Jasmonates are signals in the biosynthesis of secondary metabolites — Pathways, transcription factors and applied aspects — A brief review New Biotechnol. 48, 1-11, (2019) DOI: 10.1016/j.nbt.2017.09.007

Jasmonates (JAs) are signals in plant stress responses and development. One of the first observed and prominent responses to JAs is the induction of biosynthesis of different groups of secondary compounds. Among them are nicotine, isoquinolines, glucosinolates, anthocyanins, benzophenanthridine alkaloids, artemisinin, and terpenoid indole alkaloids (TIAs), such as vinblastine. This brief review describes modes of action of JAs in the biosynthesis of anthocyanins, nicotine, TIAs, glucosinolates and artemisinin. After introducing JA biosynthesis, the central role of the SCFCOI1-JAZ co-receptor complex in JA perception and MYB-type and MYC-type transcription factors is described. Brief comments are provided on primary metabolites as precursors of secondary compounds. Pathways for the biosynthesis of anthocyanin, nicotine, TIAs, glucosinolates and artemisinin are described with an emphasis on JA-dependent transcription factors, which activate or repress the expression of essential genes encoding enzymes in the biosynthesis of these secondary compounds. Applied aspects are discussed using the biotechnological formation of artemisinin as an example of JA-induced biosynthesis of secondary compounds in plant cell factories.
Publikation

Wasternack, C.; Strnad, M.; Jasmonate signaling in plant stress responses and development – active and inactive compounds New Biotechnol. 33, 604-613, (2016) DOI: 10.1016/j.nbt.2015.11.001

Jasmonates (JAs) are lipid-derived signals mediating plant responses to biotic and abiotic stresses and in plant development. Following the elucidation of each step in their biosynthesis and the important components of perception and signaling, several activators, repressors and co-repressors have been identified which contribute to fine-tuning the regulation of JA-induced gene expression. Many of the metabolic reactions in which JA participates, such as conjugation with amino acids, glucosylation, hydroxylation, carboxylation, sulfation and methylation, lead to numerous compounds with different biological activities. These metabolites may be highly active, partially active in specific processes or inactive. Hydroxylation, carboxylation and sulfation inactivate JA signaling. The precursor of JA biosynthesis, 12-oxo-phytodienoic acid (OPDA), has been identified as a JA-independent signaling compound. An increasing number of OPDA-specific processes is being identified. To conclude, the numerous JA compounds and their different modes of action allow plants to respond specifically and flexibly to alterations in the environment.
Bücher und Buchkapitel

Wasternack, C.; Jasmonates: Synthesis, Metabolism, Signal Transduction and Action (2016) DOI: 10.1002/9780470015902.a0020138.pub2

Jasmonic acid and other fatty‐acid‐derived compounds called oxylipins are signals in stress responses and development of plants. The receptor complex, signal transduction components as well as repressors and activators in jasmonate‐induced gene expression have been elucidated. Different regulatory levels and cross‐talk with other hormones are responsible for the multiplicity of plant responses to environmental and developmental cues.
Bücher und Buchkapitel

Wasternack, C.; Jasmonates in Plant Growth and Stress Responses (Tran, L.-S. P. & Pal, S., eds.). 221-263, (2014) ISBN: 978-1-4939-0491-4 DOI: 10.1007/978-1-4939-0491-4_8

Jasmonates are lipid-derived compounds which are signals in plant stress responses and development. They are synthesized in chloroplasts and peroxisomes. An endogenous rise occurs upon environmental stimuli or in distinct stages of development such as that of anthers and trichomes or in root growth. Hydroxylation, carboxylation, glucosylation, sulfation, methylation, or conjugation of jasmonic acid (JA) leads to numerous metabolites. Many of them are at least partially biologically inactive. The most bioactive JA is the (+)-7-iso-JA–isoleucine conjugate. Its perception takes place by the SCFCOI1-JAZ-co-receptor complex. At elevated levels of JAs, negative regulators such as JAZ, or JAV are subjected to proteasomal degradation, thereby allowing positively acting transcription factors of the MYC or MYB family to switch on JA-induced gene expression. In case of JAM negative regulation takes place by anatagonism to MYC2. JA and COI1 are dominant signals in gene expression after wounding or in response to necrotrophic pathogens. Cross-talk to salicylic acid, ethylene, auxin, and other hormones occurs. Growth is inhibited by JA, thereby counteracting the growth stimulation by gibberellic acid. Senescence, trichome formation, arbuscular mycorrhiza, and formation of many secondary metabolites are induced by jasmonates. Effects in cold acclimation; in intercropping; during response to herbivores, nematodes, or necrotrophic pathogens; in pre- and post-harvest; in crop quality control; and in biosynthesis of secondary compounds led to biotechnological and agricultural applications.
Bücher und Buchkapitel

Wasternack, C.; Jasmonates in Stress, Growth, and Development 91-118, (2010) ISBN: 9783527628964 DOI: 10.1002/9783527628964.ch5

This chapter contains sections titled:IntroductionJA BiosynthesisJA MetabolismBound OPDA – ArabidopsidesMutants of JA Biosynthesis and SignalingCOI1–JAZ–JA‐Ile‐Mediated JA SignalingTranscription Factors Involved in JA SignalingJasmonates and Oxylipins in DevelopmentConclusionsAcknowledgmentsReferences
Bücher und Buchkapitel

Dorka, R.; Miersch, O.; Hause, B.; Weik, P.; Wasternack, C.; Chronobiologische Phänomene und Jasmonatgehalt bei Viscum album L. 49-66, (2009)

0
Bücher und Buchkapitel

Wasternack, C.; Hause, B.; Stenzel, I.; Goetz, S.; Feussner, I.; Miersch, O.; Jasmonate signaling in tomato – The input of tissue-specific occurrence of allene oxide cyclase and JA metabolites (Benning C., Ollrogge, J.). 107-111, (2007)

0
Publikation

Delker, C.; Stenzel, I.; Hause, B.; Miersch, O.; Feussner, I.; Wasternack, C.; Jasmonate Biosynthesis in Arabidopsis thaliana - Enzymes, Products, Regulation Plant Biol. 8, 297-306, (2006) DOI: 10.1055/s-2006-923935

Among the plant hormones jasmonic acid and related derivatives are known to mediate stress responses and several developmental processes. Biosynthesis, regulation, and metabolism of jasmonic acid in Arabidopsis thaliana are reviewed, including properties of mutants of jasmonate biosynthesis. The individual signalling properties of several jasmonates are described.
Publikation

Rudus, I.; Kepczynska, E.; Kepczynski, J.; Wasternack, C.; Miersch, O.; Changes in jasmonates and 12-oxophytodienoic acid contents of Medicago sativa L. during somatic embryogenesis Acta Physiol. Plant. 27, 497-504, (2005) DOI: 10.1007/s11738-005-0055-x

Jasmonic acid (JA), its methyl ester (MeJA) and the biosynthetic precursor 12-oxophytodienoic acid (OPDA) were detected quantitatively during somatic embryogenesis of Medicago sativa L. Using GC-MS analysis, these compounds were found in initial explants, in calli and in somatic embryos in the nanogram range per gram of fresh weight. In distinct stages of somatic embryogenesis, JA and 12-OPDA accumulated preferentially in cotyledonary embryos. Initial explants exhibited about five-fold higher JA content than OPDA content, whereas in other stages OPDA accumulated predominantly. These data suggest that also in embryogenic tissues OPDA and JA may have individual signalling properties.
IPB Mainnav Search