zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 4 von 4.

Publikation

Wasternack, C.; Feussner, I. The Oxylipin Pathways: Biochemistry and Function Annu Rev Plant Biol 69, 363-386, (2018) DOI: 10.1146/annurev-arplant-042817-040440

Plant oxylipins form a constantly growing group of signaling molecules that comprise oxygenated fatty acids and metabolites derived therefrom. In the last decade, the understanding of biosynthesis, metabolism, and action of oxylipins, especially jasmonates, has dramatically improved. Additional mechanistic insights into the action of enzymes and insights into signaling pathways have been deepened for jasmonates. For other oxylipins, such as the hydroxy fatty acids, individual signaling properties and cross talk between different oxylipins or even with additional phytohormones have recently been described. This review summarizes recent understanding of the biosynthesis, regulation, and function of oxylipins.
Publikation

Quint, M.; Drost, H.-G.; Gabel, A.; Ullrich, K. K.; Bönn, M.; Grosse, I. A transcriptomic hourglass in plant embryogenesis Nature 490, 98-101, (2012) DOI: 10.1038/nature11394

Animal and plant development starts with a constituting phase called embryogenesis, which evolved independently in both lineages1. Comparative anatomy of vertebrate development—based on the Meckel-Serrès law2 and von Baer’s laws of embryology3 from the early nineteenth century—shows that embryos from various taxa appear different in early stages, converge to a similar form during mid-embryogenesis, and again diverge in later stages. This morphogenetic series is known as the embryonic ‘hourglass’4,5, and its bottleneck of high conservation in mid-embryogenesis is referred to as the phylotypic stage6. Recent analyses in zebrafish and Drosophila embryos provided convincing molecular support for the hourglass model, because during the phylotypic stage the transcriptome was dominated by ancient genes7 and global gene expression profiles were reported to be most conserved8. Although extensively explored in animals, an embryonic hourglass has not been reported in plants, which represent the second major kingdom in the tree of life that evolved embryogenesis. Here we provide phylotranscriptomic evidence for a molecular embryonic hourglass in Arabidopsis thaliana, using two complementary approaches. This is particularly significant because the possible absence of an hourglass based on morphological features in plants suggests that morphological and molecular patterns might be uncoupled. Together with the reported developmental hourglass patterns in animals, these findings indicate convergent evolution of the molecular hourglass and a conserved logic of embryogenesis across kingdoms.
Publikation

Sharma, V.K.; Monostori, T.; Göbel, C.; Hänsch, R.; Bittner, F.; Wasternack, C.; Feussner, I.; Mendel, R.R.; Hause, B.; Schulze, J. Transgenic barley plants overexpressing a 13-lipoxygenase to modify oxylipin signature Phytochemistry 67, 264-276 , (2006) DOI: 10.1016/j.phytochem.2005.11.009

0
Publikation

Feussner, I.; Fritz, I.G.; Hause, B.; Ullrich, W.R.; Wasternack, C. Induction of a new lipoxygenase form in cucumber leaves by salicylic acid or 2,6-dichloroisonicotinic acid Bot. Acta 110, 101-108, (1997) DOI: 10.1111/j.1438-8677.1997.tb00616.x

Changes in lipoxygenase (LOX) protein pattern and/or activity were investigated in relation to acquired resistance of cucumber (Cucumis sativus L.) leaves against two powdery mildews, Sphaerotheca fuliginea (Schlecht) Salmon and Erysiphe cichoracearum DC et Merat. Acquired resistance was established by spraying leaves with salicylic acid (SA) or 2,6-dichloroisonicotinic acid (INA) and estimated in whole plants by infested leaf area compared to control plants. SA was more effective than INA. According to Western blots, untreated cucumber leaves contained a 97 kDa LOX form, which remained unchanged for up to 48 h after pathogen inoculation. Upon treatment with SA alone for 24 h or with INA plus pathogen, an additional 95 kDa LOX form appeared which had an isoelectric point in the alkaline range. For the induction of this form, a threshold concentration of 1 mM SA was required, higher SA concentrations did not change LOX-95 expression which remained similar between 24 h and 96 h but further increased upon mildew inoculation. Phloem exudates contained only the LOX-97 form, in intercellular washing fluid no LOX was detected. dichloroisonicotinic localization revealed LOX protein in the cytosol of the mesophyll cells without differences between the forms.
IPB Mainnav Search