zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 27.

Preprints

Brunoni, F.; Široká, J.; Mik, V.; Pospíšil, T.; Kralová, M.; Ament, A.; Pernisová, M.; Karady, M.; Htitich, M.; Ueda, M.; Floková, K.; Wasternack, C.; Strnad, M.; Novák, O.; Conjugation ofcis-OPDA with amino acids is a conserved pathway affectingcis-OPDA homeostasis upon stress responses (2023) DOI: 10.1101/2023.07.18.549545

Jasmonates (JAs) are a family of oxylipin phytohormones regulating plant development and growth and mediating ‘defense versus growth’ responses. The upstream JA biosynthetic precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA) has been reported to act independently of the COI1-mediated JA signaling in several stress-induced and developmental processes. However, its means of perception and metabolism are only partially understood. Furthermore, cis-OPDA, but not JA, occurs in non-vascular plant species, such as bryophytes, exhibiting specific functions in defense and development. A few years ago, a low abundant isoleucine analog of the biologically active JA-Ile, OPDA-Ile, was detected in wounded leaves of flowering plants, opening up to the possibility that conjugation of cis-OPDA to amino acids might be a relevant mechanism for cis-OPDA regulation. Here, we extended the analysis of amino acid conjugates of cis-OPDA and identified naturally occurring OPDA-Val, OPDA-Phe, OPDA-Ala, OPDA-Glu, and OPDA-Asp in response to biotic and abiotic stress in Arabidopsis. The newly identified OPDA-amino acid conjugates show cis-OPDA-related plant responses in a JAR1-dependent manner. We also discovered that the synthesis and hydrolysis of cis-OPDA amino acid conjugates are regulated by members of the amidosynthetase GH3 and the amidohydrolase ILR1/ILL families. Finally, we found that the cis-OPDA conjugative pathway already functions in non-vascular plants and gymnosperms. Thus, one level of regulation by which plants modulate cis-OPDA homeostasis is the synthesis and hydrolysis of OPDA-amino acid conjugates, which temporarily store cis-OPDA in stress responses.
Bücher und Buchkapitel

Wasternack, C.; Jasmonates: Synthesis, Metabolism, Signal Transduction and Action (2016) DOI: 10.1002/9780470015902.a0020138.pub2

Jasmonic acid and other fatty‐acid‐derived compounds called oxylipins are signals in stress responses and development of plants. The receptor complex, signal transduction components as well as repressors and activators in jasmonate‐induced gene expression have been elucidated. Different regulatory levels and cross‐talk with other hormones are responsible for the multiplicity of plant responses to environmental and developmental cues.
Bücher und Buchkapitel

Wasternack, C.; Jasmonates in Plant Growth and Stress Responses (Tran, L.-S. P. & Pal, S., eds.). 221-263, (2014) ISBN: 978-1-4939-0491-4 DOI: 10.1007/978-1-4939-0491-4_8

Jasmonates are lipid-derived compounds which are signals in plant stress responses and development. They are synthesized in chloroplasts and peroxisomes. An endogenous rise occurs upon environmental stimuli or in distinct stages of development such as that of anthers and trichomes or in root growth. Hydroxylation, carboxylation, glucosylation, sulfation, methylation, or conjugation of jasmonic acid (JA) leads to numerous metabolites. Many of them are at least partially biologically inactive. The most bioactive JA is the (+)-7-iso-JA–isoleucine conjugate. Its perception takes place by the SCFCOI1-JAZ-co-receptor complex. At elevated levels of JAs, negative regulators such as JAZ, or JAV are subjected to proteasomal degradation, thereby allowing positively acting transcription factors of the MYC or MYB family to switch on JA-induced gene expression. In case of JAM negative regulation takes place by anatagonism to MYC2. JA and COI1 are dominant signals in gene expression after wounding or in response to necrotrophic pathogens. Cross-talk to salicylic acid, ethylene, auxin, and other hormones occurs. Growth is inhibited by JA, thereby counteracting the growth stimulation by gibberellic acid. Senescence, trichome formation, arbuscular mycorrhiza, and formation of many secondary metabolites are induced by jasmonates. Effects in cold acclimation; in intercropping; during response to herbivores, nematodes, or necrotrophic pathogens; in pre- and post-harvest; in crop quality control; and in biosynthesis of secondary compounds led to biotechnological and agricultural applications.
Bücher und Buchkapitel

Vaira, A. M.; Gago-Zachert, S.; Garcia, M. L.; Guerri, J.; Hammond, J.; Milne, R. G.; Moreno, P.; Morikawa, T.; Natsuaki, T.; Navarro, J. A.; Pallas, V.; Torok, V.; Verbeek, M.; Vetten, H. J.; Family - Ophioviridae (King, A. M. Q., et al., eds.). 743-748, (2012) DOI: 10.1016/B978-0-12-384684-6.00060-4

This chapter focuses on Ophioviridae family whose sole member genus is Ophiovirus. The member species of the genus include Citrus psorosis virus (CPsV), Freesia sneak virus(FreSV), Lettuce ring necrosis virus (LRNV), and Mirafiori lettuce big-vein virus (MiLBVV).The single stranded negative/possibly ambisense RNA genome is divided into 3–4 segments, each of which is encapsidated in a single coat protein (43–50 kDa) forming filamentous virions of about 3 nm in diameter, in shape of kinked or probably internally coiled circles of at least two different contour lengths. Ophioviruses can be mechanically transmitted to a limited range of test plants, inducing local lesions and systemic mottle. The natural hosts of CPsV, ranunculus white mottle virus (RWMV), MiLBVV, and LRNV are dicotyledonous plants of widely differing taxonomy. CPsV has a wide geographical distribution in citrus in the Americas, in the Mediterranean and in New Zealand. FreSV has been reported in two species of the family Ranunculacae from Northern Italy, and in lettuce in France and Germany. Tulip mild mottle mosaic virus (TMMMV) has been reported in tulips in Japan. LRNV is closely associated with lettuce ring necrosis disease in The Netherlands, Belgium, and France, and FreSV has been reported in Europe, Africa, North America and New Zealand.
Bücher und Buchkapitel

Wasternack, C.; Jasmonates in Stress, Growth, and Development 91-118, (2010) ISBN: 9783527628964 DOI: 10.1002/9783527628964.ch5

This chapter contains sections titled:IntroductionJA BiosynthesisJA MetabolismBound OPDA – ArabidopsidesMutants of JA Biosynthesis and SignalingCOI1–JAZ–JA‐Ile‐Mediated JA SignalingTranscription Factors Involved in JA SignalingJasmonates and Oxylipins in DevelopmentConclusionsAcknowledgmentsReferences
Bücher und Buchkapitel

Dorka, R.; Miersch, O.; Hause, B.; Weik, P.; Wasternack, C.; Chronobiologische Phänomene und Jasmonatgehalt bei Viscum album L. 49-66, (2009)

0
Publikation

Guranowski, A.; Miersch, O.; Staswick, P. E.; Suza, W.; Wasternack, C.; Substrate specificity and products of side-reactions catalyzed by jasmonate:amino acid synthetase (JAR1) FEBS Lett. 581, 815-820, (2007) DOI: 10.1016/j.febslet.2007.01.049

Jasmonate:amino acid synthetase (JAR1) is involved in the function of jasmonic acid (JA) as a plant hormone. It catalyzes the synthesis of several JA‐amido conjugates, the most important of which appears to be JA‐Ile. Structurally, JAR1 is a member of the firefly luciferase superfamily that comprises enzymes that adenylate various organic acids. This study analyzed the substrate specificity of recombinant JAR1 and determined whether it catalyzes the synthesis of mono‐ and dinucleoside polyphosphates, which are side‐reaction products of many enzymes forming acyl ∼ adenylates. Among different oxylipins tested as mixed stereoisomers for substrate activity with JAR1, the highest rate of conversion to Ile‐conjugates was observed for (±)‐JA and 9,10‐dihydro‐JA, while the rate of conjugation with 12‐hydroxy‐JA and OPC‐4 (3‐oxo‐2‐(2Z ‐pentenyl)cyclopentane‐1‐butyric acid) was only about 1–2% that for (±)‐JA. Of the two stereoisomers of JA, (−)‐JA and (+)‐JA, rate of synthesis of the former was about 100‐fold faster than for (+)‐JA. Finally, we have demonstrated that (1) in the presence of ATP, Mg2+, (−)‐JA and tripolyphosphate the ligase produces adenosine 5′‐tetraphosphate (p4A); (2) addition of isoleucine to that mixture halts the p4A synthesis; (3) the enzyme produces neither diadenosine triphosphate (Ap3A) nor diadenosine tetraphosphate (Ap4A) and (4) Ap4A cannot substitute ATP as a source of adenylate in the complete reaction that yields JA‐Ile.
Bücher und Buchkapitel

Wasternack, C.; Hause, B.; Stenzel, I.; Goetz, S.; Feussner, I.; Miersch, O.; Jasmonate signaling in tomato – The input of tissue-specific occurrence of allene oxide cyclase and JA metabolites (Benning C., Ollrogge, J.). 107-111, (2007)

0
Bücher und Buchkapitel

Flores, R.; Carbonell, A.; De la Peña, M.; Gago, S.; RNAs Autocatalíticos: Ribozimas de Cabeza de Martillo 407-425, (2007)

0
Bücher und Buchkapitel

Vaira, A. M.; Acotto, G. P.; Gago-Zachert, S.; Garcia, M. L.; Grau, O.; Milne, R. G.; Morikawa, T.; Natsuaki, T.; Torov, V.; Verbeek, M.; Vetten, H. J.; Genus Ophiovirus 673-679, (2005) ISBN: 9780080575483 DOI: 10.1016/B978-0-12-249951-7.50014-6

0
IPB Mainnav Search