zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Zeige Ergebnisse 1 bis 4 von 4.

Publikation

Lannoo, N.; Vandenborre, G.; Miersch, O.; Smagghe, G.; Wasternack, C.; Peumans, W. J.; Van Damme, E. J. M.; The Jasmonate-Induced Expression of the Nicotiana tabacum Leaf Lectin Plant Cell Physiol. 48, 1207-1218, (2007) DOI: 10.1093/pcp/pcm090

Previous experiments with tobacco (Nicotiana tabacum L. cv Samsun NN) plants revealed that jasmonic acid methyl ester (JAME) induces the expression of a cytoplasmic/nuclear lectin in leaf cells and provided the first evidence that jasmonates affect the expression of carbohydrate-binding proteins in plant cells. To corroborate the induced accumulation of relatively large amounts of a cytoplasmic/nuclear lectin, a detailed study was performed on the induction of the lectin in both intact tobacco plants and excised leaves. Experiments with different stress factors demonstrated that the lectin is exclusively induced by exogeneously applied jasmonic acid and JAME, and to a lesser extent by insect herbivory. The lectin concentration depends on leaf age and the position of the tissue in the leaf. JAME acts systemically in intact plants but very locally in excised leaves. Kinetic analyses indicated that the lectin is synthesized within 12 h exposure time to JAME, reaching a maximum after 60 h. After removal of JAME, the lectin progressively disappears from the leaf tissue. The JAME-induced accumulation of an abundant nuclear/cytoplasmic lectin is discussed in view of the possible role of this lectin in the plant.
Publikation

Guranowski, A.; Miersch, O.; Staswick, P. E.; Suza, W.; Wasternack, C.; Substrate specificity and products of side-reactions catalyzed by jasmonate:amino acid synthetase (JAR1) FEBS Lett. 581, 815-820, (2007) DOI: 10.1016/j.febslet.2007.01.049

Jasmonate:amino acid synthetase (JAR1) is involved in the function of jasmonic acid (JA) as a plant hormone. It catalyzes the synthesis of several JA‐amido conjugates, the most important of which appears to be JA‐Ile. Structurally, JAR1 is a member of the firefly luciferase superfamily that comprises enzymes that adenylate various organic acids. This study analyzed the substrate specificity of recombinant JAR1 and determined whether it catalyzes the synthesis of mono‐ and dinucleoside polyphosphates, which are side‐reaction products of many enzymes forming acyl ∼ adenylates. Among different oxylipins tested as mixed stereoisomers for substrate activity with JAR1, the highest rate of conversion to Ile‐conjugates was observed for (±)‐JA and 9,10‐dihydro‐JA, while the rate of conjugation with 12‐hydroxy‐JA and OPC‐4 (3‐oxo‐2‐(2Z ‐pentenyl)cyclopentane‐1‐butyric acid) was only about 1–2% that for (±)‐JA. Of the two stereoisomers of JA, (−)‐JA and (+)‐JA, rate of synthesis of the former was about 100‐fold faster than for (+)‐JA. Finally, we have demonstrated that (1) in the presence of ATP, Mg2+, (−)‐JA and tripolyphosphate the ligase produces adenosine 5′‐tetraphosphate (p4A); (2) addition of isoleucine to that mixture halts the p4A synthesis; (3) the enzyme produces neither diadenosine triphosphate (Ap3A) nor diadenosine tetraphosphate (Ap4A) and (4) Ap4A cannot substitute ATP as a source of adenylate in the complete reaction that yields JA‐Ile.
Publikation

Schilling, S.; Manhart, S.; Hoffmann, T.; Ludwig, H.-H.; Wasternack, C.; Demuth, H.-U.; Substrate Specificity of Glutaminyl Cyclases from Plants and Animals Biol. Chem. 384, 1583-1592, (2003) DOI: 10.1515/BC.2003.175

Glutaminyl cyclases (QC) catalyze the intramolecular cyclization of N-terminal glutamine residues of peptides and proteins. For a comparison of the substrate specificity of human and papaya QC enzymes, a novel continuous assay was established by adapting an existing discontinuous method. Specificity constants (kcat/Km) of dipeptides and dipeptide surrogates were higher for plant QC, whereas the selectivity for oligopeptides was similar for both enzymes. However, only the specificity constants of mammalian QC were dependent on size and composition of the substrates. Specificity constants of both enzymes were equally pH-dependent in the acidic pH-region, revealing a pKa value identical to the pKa of the substrate, suggesting similarities in the substrate conversion mode. Accordingly, both QCs converted the L-?homoglutaminyl residue in the peptide H-?homoGln-Phe-Lys-Arg-Leu-Ala-NH2 and the glutaminyl residues of the branched peptide H-Gln-Lys(Gln)-Arg-Leu-Ala-NH2 as well as the partially cyclized peptide H-Gln-cyclo( N?-Lys-Arg-Pro-Ala-Gly-Phe). In contrast, only QC from C. papaya was able to cyclize a methylated glutamine residue, while this compound did not even inhibit human QC-catalysis, suggesting distinct substrate recognition pattern. The conversion of the potential physiological substrates gastrin, neurotensin and [GlN1]-fertilization promoting peptide indicates that human QC may play a key role in posttranslational modification of most if not all pGlu-containing hormones.
Bücher und Buchkapitel

Stenzel, I.; Hause, B.; Feussner, I.; Wasternack, C.; Transcriptional Activation of Jasmonate Biosynthesis Enzymes is not Reflected at Protein Level 267-270, (2003) DOI: 10.1007/978-94-017-0159-4_62

Jasmonic acid (JA) and its precursor 12-oxo phytodienoic acid (OPDA) are lipid-derived signals in plant stress responses and development (Wasternack and Hause, 2002). Within the wound-response pathway of tomato, a local response of expression of defense genes such as the proteinase inhibitor 2 gene (PIN2) is preceded by a rise in JA (Herde et al., 1996; Howe et al., 1996) and ethylene (O’Donnell et al., 1996). Mutants affected in JA biosynthesis such as defl (Howe et al., 1996) or spr-2 (Li et al., 2002) clearly indicated that JA biosynthesis is an ultimate part of wound signaling. It is less understood, however, how the rise in JA is regulated.
IPB Mainnav Search