zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 4 von 4.

Preprints

Mitra, D.; Kumari, P.; Quegwer, J.; Klemm, S.; Möller, B.; Poeschl, Y.; Pflug, P.; Stamm, G.; Abel, S.; Bürstenbinder, K.; Microtubule-associated protein IQ67 DOMAIN5 regulates interdigitation of leaf pavement cells in Arabidopsis thaliana bioRxiv (2018) DOI: 10.1101/268466

Plant microtubules form a highly dynamic intracellular network with important roles for regulating cell division, cell proliferation and cell morphology. Its organization and dynamics are coordinated by various microtubule-associated proteins (MAPs) that integrate environmental and developmental stimuli to fine-tune and adjust cytoskeletal arrays. IQ67 DOMAIN (IQD) proteins recently emerged as a class of plant-specific MAPs with largely unknown functions. Here, using a reverse genetics approach, we characterize Arabidopsis IQD5 in terms of its expression domains, subcellular localization and biological functions. We show that IQD5 is expressed mostly in vegetative tissues, where it localizes to cortical microtubule arrays. Our phenotypic analysis of iqd5 loss-of-function lines reveals functions of IQD5 in pavement cell (PC) shape morphogenesis, as indicated by reduced interdigitation of neighboring cells in the leaf epidermis of iqd5 mutants. Histochemical analysis of cell wall composition further suggests reduced rates of cellulose deposition in anticlinal cell walls, which correlate with reduced asymmetric expansion. Lastly, we provide evidence for IQD5-dependent recruitment of calmodulin calcium sensors to cortical microtubule arrays. Our work thus identifies IQD5 as a novel player in PC shape regulation, and, for the first time, links calcium signaling to developmental processes that regulate multi-polar growth in PCs.
Publikation

Wasternack, C.; Feussner, I.; The Oxylipin Pathways: Biochemistry and Function Annu. Rev. Plant Biol. 69, 363-386, (2018) DOI: 10.1146/annurev-arplant-042817-040440

Plant oxylipins form a constantly growing group of signaling molecules that comprise oxygenated fatty acids and metabolites derived therefrom. In the last decade, the understanding of biosynthesis, metabolism, and action of oxylipins, especially jasmonates, has dramatically improved. Additional mechanistic insights into the action of enzymes and insights into signaling pathways have been deepened for jasmonates. For other oxylipins, such as the hydroxy fatty acids, individual signaling properties and cross talk between different oxylipins or even with additional phytohormones have recently been described. This review summarizes recent understanding of the biosynthesis, regulation, and function of oxylipins.
Publikation

Wasternack, C.; Strnad, M.; Jasmonates: News on Occurrence, Biosynthesis, Metabolism and Action of an Ancient Group of Signaling Compounds Int. J. Mol. Sci. 19, 2539, (2018) DOI: 10.3390/ijms19092539

Jasmonic acid (JA) and its related derivatives are ubiquitously occurring compounds of land plants acting in numerous stress responses and development. Recent studies on evolution of JA and other oxylipins indicated conserved biosynthesis. JA formation is initiated by oxygenation of α-linolenic acid (α-LeA, 18:3) or 16:3 fatty acid of chloroplast membranes leading to 12-oxo-phytodienoic acid (OPDA) as intermediate compound, but in Marchantiapolymorpha and Physcomitrellapatens, OPDA and some of its derivatives are final products active in a conserved signaling pathway. JA formation and its metabolic conversion take place in chloroplasts, peroxisomes and cytosol, respectively. Metabolites of JA are formed in 12 different pathways leading to active, inactive and partially active compounds. The isoleucine conjugate of JA (JA-Ile) is the ligand of the receptor component COI1 in vascular plants, whereas in the bryophyte M. polymorpha COI1 perceives an OPDA derivative indicating its functionally conserved activity. JA-induced gene expressions in the numerous biotic and abiotic stress responses and development are initiated in a well-studied complex regulation by homeostasis of transcription factors functioning as repressors and activators.
Publikation

Wasternack, C.; Hause, B.; A Bypass in Jasmonate Biosynthesis – the OPR3-independent Formation Trends Plant Sci. 23, 276-279, (2018) DOI: 10.1016/j.tplants.2018.02.011

For the first time in 25 years, a new pathway for biosynthesis of jasmonic acid (JA) has been identified. JA production takes place via 12-oxo-phytodienoic acid (OPDA) including reduction by OPDA reductases (OPRs). A loss-of-function allele, opr3-3, revealed an OPR3-independent pathway converting OPDA to JA.
IPB Mainnav Search