zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 27.

Bücher und Buchkapitel

Carbonell, A.; Flores, R.; Gago, S.; Hammerhead Ribozymes Against Virus and Viroid RNAs (Erdmann, V. A. & Barciszewski, J., eds.). RNA Technologies 411-427, (2012) ISBN: 978-3-642-27426-8 DOI: 10.1007/978-3-642-27426-8_16

The hammerhead ribozyme, a small catalytic motif that promotes self-cleavage of the RNAs in which it is found naturally embedded, can be manipulated to recognize and cleave specifically in trans other RNAs in the presence of Mg2+. To be really effective, hammerheads need to operate at the low concentration of Mg2+ existing in vivo. Evidence has been gathered along the last years showing that tertiary stabilizing motifs (TSMs), particularly interactions between peripheral loops, are critical for the catalytic activity of hammerheads at physiological levels of Mg2+. These TSMs, in two alternative formats, have been incorporated into a new generation of more efficient trans-cleaving hammerheads, some of which are active in vitro and in planta when targeted against the highly structured RNA of a viroid (a small plant pathogen). This strategy has potential to confer protection against other RNA replicons, like RNA viruses infecting plants and animals.
Publikation

Kopycki, J.; Schmidt, J.; Abel, S.; Grubb, C. D.; Chemoenzymatic synthesis of diverse thiohydroximates from glucosinolate-utilizing enzymes from Helix pomatia and Caldicellulosiruptor saccharolyticus Biotechnol. Lett. 33, 1039-1046, (2011) DOI: 10.1007/s10529-011-0530-y

Thiohydroximates comprise a diverse class of compounds important in both biological and industrial chemistry. Their syntheses are generally limited to simple alkyl and aryl compounds with few stereocenters and a narrow range of functional groups. We hypothesized that sequential action of two recombinant enzymes, a sulfatase from Helix pomatia and a β-O-glucosidase from Caldicellulosiruptor saccharolyticus, on glucosinolates would allow synthesis of thiohydroximates from a structurally broad array of abundant precursors. We report successful synthesis of thiohydroximates of varied chemical classes, including from homochiral compounds of demonstrated biological activity. The chemoenzymatic synthetic route reported here should allow access to many, if not all, of the thiohydroximate core structures of the ~200 known naturally occurring glucosinolates. The enrichment of this group for compounds with possible pharmacological potential is discussed.
Publikation

Flores, R.; Grubb, D.; Elleuch, A.; Nohales, M.-?.; Delgado, S.; Gago, S.; Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus: Variations on a theme RNA Biol. 8, 200-206, (2011) DOI: 10.4161/rna.8.2.14238

Viroids and viroid-like satellite RNAs from plants, and the human hepatitis delta virus (HDV) RNA share some properties that include small size, circularity and replication through a rolling-circle mechanism. Replication occurs in different cell compartments (nucleus, chloroplast and membrane-associated cytoplasmatic vesicles) and has three steps: RNA polymerization, cleavage and ligation. The first step generates oligomeric RNAs that result from the reiterative transcription of the circular templates of one or both polarities, and is catalyzed by either the RNA-dependent RNA polymerase of the helper virus on which viroid-like satellite RNAs are functionally dependent, or by host DNA-dependent RNA polymerases that, remarkably, viroids and HDV redirect to transcribe RNA templates. Cleavage is mediated by host enzymes in certain viroids and viroid-like satellite RNAs, while in others and in HDV is mediated by cis-acting ribozymes of three classes. Ligation appears to be catalyzed mainly by host enzymes. Replication most likely also involves many other non-catalytic proteins of host origin and, in HDV, the single virus-encoded protein.
Publikation

Carbonell, A.; Flores, R.; Gago, S.; Trans-cleaving hammerhead ribozymes with tertiary stabilizing motifs: in vitro and in vivo activity against a structured viroid RNA Nucleic Acids Res. 39, 2432-2444, (2011) DOI: 10.1093/nar/gkq1051

Trans -cleaving hammerheads with discontinuous or extended stem I and with tertiary stabilizing motifs (TSMs) have been tested previously against short RNA substrates in vitro at low Mg 2+ concentration. However, the potential of these ribozymes for targeting longer and structured RNAs in vitro and in vivo has not been examined. Here, we report the in vitro cleavage of short RNAs and of a 464-nt highly structured RNA from potato spindle tuber viroid (PSTVd) by hammerheads with discontinuous and extended formats at submillimolar Mg 2+ . Under these conditions, hammerheads derived from eggplant latent viroid and peach latent mosaic viroid (PLMVd) with discontinuous and extended formats, respectively, where the most active. Furthermore, a PLMVd-derived hammerhead with natural TSMs showed activity in vivo against the same long substrate and interfered with systemic PSTVd infection, thus reinforcing the idea that this class of ribozymes has potential to control pathogenic RNA replicons.
Publikation

Renovell, ?.; Gago, S.; Ruiz-Ruiz, S.; Velázquez, K.; Navarro, L.; Moreno, P.; Vives, M. C.; Guerri, J.; Mapping the subgenomic RNA promoter of the Citrus leaf blotch virus coat protein gene by Agrobacterium-mediated inoculation Virology 406, 360-369, (2010) DOI: 10.1016/j.virol.2010.07.034

Citrus leaf blotch virus has a single-stranded positive-sense genomic RNA (gRNA) of 8747 nt organized in three open reading frames (ORFs). The ORF1, encoding a polyprotein involved in replication, is translated directly from the gRNA, whereas ORFs encoding the movement (MP) and coat (CP) proteins are expressed via 3' coterminal subgenomic RNAs (sgRNAs). We characterized the minimal promoter region critical for the CP-sgRNA expression in infected cells by deletion analyses using Agrobacterium-mediated infection of Nicotiana benthamiana plants. The minimal CP-sgRNA promoter was mapped between nucleotides −67 and + 50 nt around the transcription start site. Surprisingly, larger deletions in the region between the CP-sgRNA transcription start site and the CP translation initiation codon resulted in increased CP-sgRNA accumulation, suggesting that this sequence could modulate the CP-sgRNA transcription. Site-specific mutational analysis of the transcription start site revealed that the + 1 guanylate and the + 2 adenylate are important for CP-sgRNA synthesis.
Publikation

Serra, P.; BANI HASHEMIAN, S. M.; PENSABENE-BELLAVIA, G.; Gago, S.; DURAN-VILA, N.; An artificial chimeric derivative of Citrus viroid V involves the terminal left domain in pathogenicity Mol. Plant Pathol. 10, 515-522, (2009) DOI: 10.1111/j.1364-3703.2009.00553.x

The recently described Citrus viroid V (CVd‐V) induces, in Etrog citron, mild stunting and very small necrotic lesions and cracks, sometimes filled with gum. As Etrog citron plants co‐infected with Citrus dwarfing viroid (CDVd) and CVd‐V show synergistic interactions, these host–viroid combinations provide a convenient model to identify the pathogenicity determinant(s). The biological effects of replacing limited portions of the rod‐like structure of CVd‐V with the corresponding portions of CDVd are reported. Chimeric constructs were synthesized using a novel polymerase chain reaction‐based approach, much more flexible than those based on restriction enzymes used in previous studies. Of the seven chimeras (Ch) tested, only one (Ch5) proved to be infectious. Plants infected with Ch5 showed no symptoms and, although this novel chimera was able to replicate to relatively high titres in singly infected plants, it was rapidly displaced by either CVd‐V or CDVd in doubly infected plants. The results demonstrate that direct interaction(s) between structural elements in the viroid RNA (in this case, the terminal left domain) and as yet unidentified host factors play an important role in modulating viroid pathogenicity. This is the first pathogenic determinant mapped in species of the genus Apscaviroid.
Publikation

Pienkny, S.; Brandt, W.; Schmidt, J.; Kramell, R.; Ziegler, J.; Functional characterization of a novel benzylisoquinoline O-methyltransferase suggests its involvement in papaverine biosynthesis in opium poppy (Papaver somniferum L) Plant J. 60, 56-67, (2009) DOI: 10.1111/j.1365-313X.2009.03937.x

The benzylisoquinoline alkaloids are a highly diverse group of about 2500 compounds which accumulate in a species‐specific manner. Despite the numerous compounds which could be identified, the biosynthetic pathways and the participating enzymes or cDNAs could be characterized only for a few selected members, whereas the biosynthesis of the majority of the compounds is still largely unknown. In an attempt to characterize additional biosynthetic steps at the molecular level, integration of alkaloid and transcript profiling across Papaver species was performed. This analysis showed high expression of an expressed sequence tag (EST) of unknown function only in Papaver somniferum varieties. After full‐length cloning of the open reading frame and sequence analysis, this EST could be classified as a member of the class II type O ‐methyltransferase protein family. It was related to O ‐methyltransferases from benzylisoquinoline biosynthesis, and the amino acid sequence showed 68% identical residues to norcoclaurine 6‐O ‐methyltransferase. However, rather than methylating norcoclaurine, the recombinant protein methylated norreticuline at position seven with a K m of 44 μm using S ‐adenosyl‐l ‐methionine as a cofactor. Of all substrates tested, only norreticuline was converted. Even minor changes in the benzylisoquinoline backbone were not tolerated by the enzyme. Accordingly, the enzyme was named norreticuline 7–O ‐methyltransferase (N7OMT). This enzyme represents a novel O ‐methyltransferase in benzylisoquinoline metabolism. Expression analysis showed slightly increased expression of N7OMT in P. somniferum varieties containing papaverine, suggesting its involvement in the partially unknown biosynthesis of this pharmaceutically important compound.
Publikation

Gago, S.; Elena, S. F.; Flores, R.; Sanjuan, R.; Extremely High Mutation Rate of a Hammerhead Viroid Science 323, 1308-1308, (2009) DOI: 10.1126/science.1169202

The mutation rates of viroids, plant pathogens with minimal non-protein-coding RNA genomes, are unknown. Their replication is mediated by host RNA polymerases and, in some cases, by hammerhead ribozymes, small self-cleaving motifs embedded in the viroid. By using the principle that the population frequency of nonviable genotypes equals the mutation rate, we screened for changes that inactivated the hammerheads of Chrysanthemum chlorotic mottle viroid. We obtained a mutation rate of 1/400 per site, the highest reported for any biological entity. Such error-prone replication can only be tolerated by extremely simple genomes such as those of viroids and, presumably, the primitive replicons of the RNA world. Our results suggest that the emergence of replication fidelity was critical for the evolution of complexity in the early history of life.
Publikation

Flores, R.; Gas, M.-E.; Molina-Serrano, D.; Nohales, M.-?.; Carbonell, A.; Gago, S.; De la Peña, M.; Daròs, J.-A.; Viroid Replication: Rolling-Circles, Enzymes and Ribozymes Viruses 1, 317-334, (2009) DOI: 10.3390/v1020317

Viroids, due to their small size and lack of protein-coding capacity, must rely essentially on their hosts for replication. Intriguingly, viroids have evolved the ability to replicate in two cellular organella, the nucleus (family Pospiviroidae) and the chloroplast (family Avsunviroidae). Viroid replication proceeds through an RNA-based rolling-circle mechanism with three steps that, with some variations, operate in both polarity strands: i) synthesis of longer-than-unit strands catalyzed by either the nuclear RNA polymerase II or a nuclear-encoded chloroplastic RNA polymerase, in both instances redirected to transcribe RNA templates, ii) cleavage to unit-length, which in the family Avsunviroidae is mediated by hammerhead ribozymes embedded in both polarity strands, while in the family Pospiviroidae the oligomeric RNAs provide the proper conformation but not the catalytic activity, and iii) circularization. The host RNA polymerases, most likely assisted by additional host proteins, start transcription from specific sites, thus implying the existence of viroid promoters. Cleavage and ligation in the family Pospiviroidae is probably catalyzed by an RNase III-like enzyme and an RNA ligase able to circularize the resulting 5’ and 3’ termini. Whether a chloroplastic RNA ligase mediates circularization in the family Avsunviroidae, or this reaction is autocatalytic, remains an open issue.
Publikation

Ziegler, J.; Facchini, P. J.; Geißler, R.; Schmidt, J.; Ammer, C.; Kramell, R.; Voigtländer, S.; Gesell, A.; Pienkny, S.; Brandt, W.; Evolution of morphine biosynthesis in opium poppy Phytochemistry 70, 1696-1707, (2009) DOI: 10.1016/j.phytochem.2009.07.006

Benzylisoquinoline alkaloids (BIAs) are a group of nitrogen-containing plant secondary metabolites comprised of an estimated 2500 identified structures. In BIA metabolism, (S)-reticuline is a key branch-point intermediate that can be directed into several alkaloid subtypes with different structural skeleton configurations. The morphinan alkaloids are one subclass of BIAs produced in only a few plant species, most notably and abundantly in the opium poppy (Papaver somniferum). Comparative transcriptome analysis of opium poppy and several other Papaver species that do not accumulate morphinan alkaloids showed that known genes encoding BIA biosynthetic enzymes are expressed at higher levels in P. somniferum. Three unknown cDNAs that are co-ordinately expressed with several BIA biosynthetic genes were identified as enzymes in the pathway. One of these enzymes, salutaridine reductase (SalR), which is specific for the production of morphinan alkaloids, was isolated and heterologously overexpressed in its active form not only from P. somniferum, but also from Papaver species that do not produce morphinan alkaloids. SalR is a member of a class of short chain dehydrogenase/reductases (SDRs) that are active as monomers and possess an extended amino acid sequence compared with classical SDRs. Homology modelling and substrate docking revealed the substrate binding site for SalR. The amino acids residues conferring salutaridine binding were compared to several members of the SDR family from different plant species, which non-specifically reduce (−)-menthone to (+)-neomenthol. Previously, it was shown that some of these proteins are involved in plant defence. The recruitment of specific monomeric SDRs from monomeric SDRs involved in plant defence is discussed.
IPB Mainnav Search