zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 7 von 7.

Publikation

Ibañez, C.; Delker, C.; Martinez, C.; Bürstenbinder, K.; Janitza, P.; Lippmann, R.; Ludwig, W.; Sun, H.; James, G. V.; Klecker, M.; Grossjohann, A.; Schneeberger, K.; Prat, S.; Quint, M.; Brassinosteroids Dominate Hormonal Regulation of Plant Thermomorphogenesis via BZR1 Curr. Biol. 28, 303-310.e3, (2018) DOI: 10.1016/j.cub.2017.11.077

Thermomorphogenesis is defined as the suite of morphological changes that together are likely to contribute to adaptive growth acclimation to usually elevated ambient temperature [1, 2]. While many details of warmth-induced signal transduction are still elusive, parallels to light signaling recently became obvious (reviewed in [3]). It involves photoreceptors that can also sense changes in ambient temperature [3, 4, 5] and act, for example, by repressing protein activity of the central integrator of temperature information PHYTOCHROME-INTERACTING FACTOR 4 (PIF4 [6]). In addition, PIF4 transcript accumulation is tightly controlled by the evening complex member EARLY FLOWERING 3 [7, 8]. According to the current understanding, PIF4 activates growth-promoting genes directly but also via inducing auxin biosynthesis and signaling, resulting in cell elongation. Based on a mutagenesis screen in the model plant Arabidopsis thaliana for mutants with defects in temperature-induced hypocotyl elongation, we show here that both PIF4 and auxin function depend on brassinosteroids. Genetic and pharmacological analyses place brassinosteroids downstream of PIF4 and auxin. We found that brassinosteroids act via the transcription factor BRASSINAZOLE RESISTANT 1 (BZR1), which accumulates in the nucleus at high temperature, where it induces expression of growth-promoting genes. Furthermore, we show that at elevated temperature BZR1 binds to the promoter of PIF4, inducing its expression. These findings suggest that BZR1 functions in an amplifying feedforward loop involved in PIF4 activation. Although numerous negative regulators of PIF4 have been described, we identify BZR1 here as a true temperature-dependent positive regulator of PIF4, acting as a major growth coordinator.
Publikation

Ibañez, C.; Poeschl, Y.; Peterson, T.; Bellstädt, J.; Denk, K.; Gogol-Döring, A.; Quint, M.; Delker, C.; Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana BMC Plant Biol. 17, 114, (2017) DOI: 10.1186/s12870-017-1068-5

BackgroundGlobal increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best.ResultsHere, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown under long day conditions in four different temperatures ranging from 16 to 28 °C. We used Q10, GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions.ConclusionGenotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.
Publikation

Raschke, A.; Ibañez, C.; Ullrich, K. K.; Anwer, M. U.; Becker, S.; Glöckner, A.; Trenner, J.; Denk, K.; Saal, B.; Sun, X.; Ni, M.; Davis, S. J.; Delker, C.; Quint, M.; Natural variants of ELF3 affect thermomorphogenesis by transcriptionally modulating PIF4-dependent auxin response genes BMC Plant Biol. 15, 197, (2015) DOI: 10.1186/s12870-015-0566-6

BackgroundPerception and transduction of temperature changes result in altered growth enabling plants to adapt to increased ambient temperature. While PHYTOCHROME-INTERACTING FACTOR4 (PIF4) has been identified as a major ambient temperature signaling hub, its upstream regulation seems complex and is poorly understood. Here, we exploited natural variation for thermo-responsive growth in Arabidopsis thaliana using quantitative trait locus (QTL) analysis.ResultsWe identified GIRAFFE2.1, a major QTL explaining ~18 % of the phenotypic variation for temperature-induced hypocotyl elongation in the Bay-0 x Sha recombinant inbred line population. Transgenic complementation demonstrated that allelic variation in the circadian clock regulator EARLY FLOWERING3 (ELF3) is underlying this QTL. The source of variation could be allocated to a single nucleotide polymorphism in the ELF3 coding region, resulting in differential expression of PIF4 and its target genes, likely causing the observed natural variation in thermo-responsive growth.ConclusionsIn combination with other recent studies, this work establishes the role of ELF3 in the ambient temperature signaling network. Natural variation of ELF3-mediated gating of PIF4 expression during nightly growing periods seems to be affected by a coding sequence quantitative trait nucleotide that confers a selective advantage in certain environments. In addition, natural ELF3 alleles seem to differentially integrate temperature and photoperiod information to induce architectural changes. Thus, ELF3 emerges as an essential coordinator of growth and development in response to diverse environmental cues and implicates ELF3 as an important target of adaptation.
Publikation

Delker, C.; Sonntag, L.; James, G.; Janitza, P.; Ibañez, C.; Ziermann, H.; Peterson, T.; Denk, K.; Mull, S.; Ziegler, J.; Davis, S.; Schneeberger, K.; Quint, M.; The DET1-COP1-HY5 Pathway Constitutes a Multipurpose Signaling Module Regulating Plant Photomorphogenesis and Thermomorphogenesis Cell Rep. 9, 1983-1989, (2014) DOI: 10.1016/j.celrep.2014.11.043

Developmental plasticity enables plants to respond to elevated ambient temperatures by adapting their shoot architecture. On the cellular level, the basic-helix-loop-helix (bHLH) transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) coordinates this response by activating hormonal modules that in turn regulate growth. In addition to an unknown temperature-sensing mechanism, it is currently not understood how temperature regulates PIF4 activity. Using a forward genetic approach in Arabidopsis thaliana, we present extensive genetic evidence demonstrating that the DE-ETIOLATED 1 (DET1)-CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1)-ELONGATED HYPOCOTYL 5 (HY5)-dependent photomorphogenesis pathway transcriptionally regulates PIF4 to coordinate seedling growth in response to elevated temperature. Our findings demonstrate that two of the most prevalent environmental cues, light and temperature, share a much larger set of signaling components than previously assumed. Similar to the toolbox concept in animal embryonic patterning, multipurpose signaling modules might have evolved in plants to translate various environmental stimuli into adaptational growth processes.
Publikation

Wasternack, C.; Kombrink, E.; Jasmonates: Structural Requirements for Lipid-Derived Signals Active in Plant Stress Responses and Development ACS Chem. Biol. 5, 63-77, (2010) DOI: 10.1021/cb900269u

Jasmonates are lipid-derived signals that mediate plant stress responses and development processes. Enzymes participating in biosynthesis of jasmonic acid (JA) (1, 2) and components of JA signaling have been extensively characterized by biochemical and molecular-genetic tools. Mutants of Arabidopsis and tomato have helped to define the pathway for synthesis of jasmonoyl-isoleucine (JA-Ile), the active form of JA, and to identify the F-box protein COI1 as central regulatory unit. However, details of the molecular mechanism of JA signaling have only recently been unraveled by the discovery of JAZ proteins that function in transcriptional repression. The emerging picture of JA perception and signaling cascade implies the SCFCOI1 complex operating as E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S-proteasome pathway, thereby allowing the transcription factor MYC2 to activate gene expression. The fact that only one particular stereoisomer, (+)-7-iso-JA-l-Ile (4), shows high biological activity suggests that epimerization between active and inactive diastereomers could be a mechanism for turning JA signaling on or off. The recent demonstration that COI1 directly binds (+)-7-iso-JA-l-Ile (4) and thus functions as JA receptor revealed that formation of the ternary complex COI1-JA-Ile-JAZ is an ordered process. The pronounced differences in biological activity of JA stereoisomers also imply strict stereospecific control of product formation along the JA biosynthetic pathway. The pathway of JA biosynthesis has been unraveled, and most of the participating enzymes are well-characterized. For key enzymes of JA biosynthesis the crystal structures have been established, allowing insight into the mechanisms of catalysis and modes of substrate binding that lead to formation of stereospecific products.
Publikation

Kienow, L.; Schneider, K.; Bartsch, M.; Stuible, H.-P.; Weng, H.; Miersch, O.; Wasternack, C.; Kombrink, E.; Jasmonates meet fatty acids: functional analysis of a new acyl-coenzyme A synthetase family from Arabidopsis thaliana J. Exp. Bot. 59, 403-419, (2008) DOI: 10.1093/jxb/erm325

Arabidopsis thaliana contains a large number of genes encoding carboxylic acid-activating enzymes, including long-chain fatty acyl-CoA synthetase (LACS), 4-coumarate:CoA ligases (4CL), and proteins closely related to 4CLs with unknown activities. The function of these 4CL-like proteins was systematically explored by applying an extensive substrate screen, and it was uncovered that activation of fatty acids is the common feature of all active members of this protein family, thereby defining a new group of fatty acyl-CoA synthetase, which is distinct from the known LACS family. Significantly, four family members also displayed activity towards different biosynthetic precursors of jasmonic acid (JA), including 12-oxo-phytodienoic acid (OPDA), dinor-OPDA, 3-oxo-2(2′-[Z]-pentenyl)cyclopentane-1-octanoic acid (OPC-8), and OPC-6. Detailed analysis of in vitro properties uncovered significant differences in substrate specificity for individual enzymes, but only one protein (At1g20510) showed OPC-8:CoA ligase activity. Its in vivo function was analysed by transcript and jasmonate profiling of Arabidopsis insertion mutants for the gene. OPC-8:CoA ligase expression was activated in response to wounding or infection in the wild type but was undetectable in the mutants, which also exhibited OPC-8 accumulation and reduced levels of JA. In addition, the developmental, tissue- and cell-type specific expression pattern of the gene, and regulatory properties of its promoter were monitored by analysing promoter::GUS reporter lines. Collectively, the results demonstrate that OPC-8:CoA ligase catalyses an essential step in JA biosynthesis by initiating the β-oxidative chain shortening of the carboxylic acid side chain of its precursors, and, in accordance with this function, the protein is localized in peroxisomes.
Publikation

Schneider, K.; Kienow, L.; Schmelzer, E.; Colby, T.; Bartsch, M.; Miersch, O.; Wasternack, C.; Kombrink, E.; Stuible, H.-P.; A New Type of Peroxisomal Acyl-Coenzyme A Synthetase from Arabidopsis thaliana Has the Catalytic Capacity to Activate Biosynthetic Precursors of Jasmonic Acid J. Biol. Chem. 280, 13962-13972, (2005) DOI: 10.1074/jbc.M413578200

Arabidopsis thaliana contains a large number of genes that encode carboxylic acid-activating enzymes, including nine long-chain fatty acyl-CoA synthetases, four 4-coumarate:CoA ligases (4CL), and 25 4CL-like proteins of unknown biochemical function. Because of their high structural and sequence similarity with bona fide 4CLs and their highly hydrophobic putative substrate-binding pockets, the 4CL-like proteins At4g05160 and At5g63380 were selected for detailed analysis. Following heterologous expression, the purified proteins were subjected to a large scale screen to identify their preferred in vitro substrates. This study uncovered a significant activity of At4g05160 with medium-chain fatty acids, medium-chain fatty acids carrying a phenyl substitution, long-chain fatty acids, as well as the jasmonic acid precursors 12-oxo-phytodienoic acid and 3-oxo-2-(2′-pentenyl)-cyclopentane-1-hexanoic acid. The closest homolog of At4g05160, namely At5g63380, showed high activity with long-chain fatty acids and 12-oxo-phytodienoic acid, the latter representing the most efficiently converted substrate. By using fluorescent-tagged variants, we demonstrated that both 4CL-like proteins are targeted to leaf peroxisomes. Collectively, these data demonstrate that At4g05160 and At5g63380 have the capacity to contribute to jasmonic acid biosynthesis by initiating the β-oxidative chain shortening of its precursors.
IPB Mainnav Search