zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 7 von 7.

Publikation

García, M. L.; Bó, E. D.; da Graça, J. V.; Gago-Zachert, S.; Hammond, J.; Moreno, P.; Natsuaki, T.; Pallás, V.; Navarro, J. A.; Reyes, C. A.; Luna, G. R.; Sasaya, T.; Tzanetakis, I. E.; Vaira, A. M.; Verbeek, M.; ICTV Report Consortium, .; ICTV Virus Taxonomy Profile: Ophioviridae J. Gen. Virol. 98, 1161-1162, (2017) DOI: 10.1099/jgv.0.000836

The Ophioviridae is a family of filamentous plant viruses, with single-stranded negative, and possibly ambisense, RNA genomes of 11.3–12.5 kb divided into 3–4 segments, each encapsidated separately. Virions are naked filamentous nucleocapsids, forming kinked circles of at least two different contour lengths. The sole genus, Ophiovirus, includes seven species. Four ophioviruses are soil-transmitted and their natural hosts include trees, shrubs, vegetables and bulbous or corm-forming ornamentals, both monocots and dicots. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Ophioviridae, which is available at http://www.ictv.global/report/ophioviridae.
Publikation

Trenner, J.; Poeschl, Y.; Grau, J.; Gogol-Döring, A.; Quint, M.; Delker, C.; Auxin-induced expression divergence between Arabidopsis species may originate within the TIR1/AFB–AUX/IAA–ARF module J. Exp. Bot. 68, 539-552, (2017) DOI: 10.1093/jxb/erw457

Auxin is an essential regulator of plant growth and development, and auxin signaling components are conserved among land plants. Yet, a remarkable degree of natural variation in physiological and transcriptional auxin responses has been described among Arabidopsis thaliana accessions. As intraspecies comparisons offer only limited genetic variation, we here inspect the variation of auxin responses between A. thaliana and A. lyrata. This approach allowed the identification of conserved auxin response genes including novel genes with potential relevance for auxin biology. Furthermore, promoter divergences were analyzed for putative sources of variation. De novo motif discovery identified novel and variants of known elements with potential relevance for auxin responses, emphasizing the complex, and yet elusive, code of element combinations accounting for the diversity in transcriptional auxin responses. Furthermore, network analysis revealed correlations of interspecies differences in the expression of AUX/IAA gene clusters and classic auxin-related genes. We conclude that variation in general transcriptional and physiological auxin responses may originate substantially from functional or transcriptional variations in the TIR1/AFB, AUX/IAA, and ARF signaling network. In that respect, AUX/IAA gene expression divergence potentially reflects differences in the manner in which different species transduce identical auxin signals into gene expression responses.
Publikation

Cenzano, A.; Vigliocc, A.; Miersch, O.; Abdala, G.; Hydroxylated jasmonate levels during stolon to tuber transition in Solarium tuberosum L Potato Res. 48, 107, (2005) DOI: 10.1007/BF02742370

Various octadecanoids and derived compounds have been identified in potato leaves. However, information regarding jasmonate hydroxylated forms in stolons or tubers is scarce. We investigated endogenous jasmonates in stolon material ofSolarium tuberosum cv. Spunta. Stolons and incipient tubers were collected from 8 weeks old plants. The material was cut into apical regions and stolons. We identified jasmonic acid (JA), methyl jasmonate, 11-OH-JA, 12-OH-JA, 12-oxo-phytodienoic acid (OPDA) and a conjugate. The content of JA and 12OH-JA decreased in the apical region but remained high in stolons during tuberization. Thus the apical region might be a site of JAs-utilization or metabolization and stolons might supply JAs to that region. The content of 12-OH-JA was higher than that of 11-OH-JA in all stages analyzed, both in apical regions and stolons. However, these compounds showed a different time-course in the apical region: while 11-OH-JA increased, 12-OH-JA decreased. Thus, JA from leaves or roots could be transported as 12-OH-JA to the apical region, stimulating tuber formation.
Publikation

Andrade, A.; Vigliocco, A.; Alemano, S.; Miersch, O.; Botella, M. A.; Abdala, G.; Endogenous jasmonates and octadecanoids in hypersensitive tomato mutants during germination and seedling development in response to abiotic stress Seed Sci. Res. 15, 309-318, (2005) DOI: 10.1079/SSR2005219

Although jasmonates (JAs) are involved in germination and seedling development, the regulatory mechanism of JAs, and their relation with endogenous level modifications in these processes, is not well understood. We report here the detection of 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA), 11-hydroxyjasmonate (11-OH-JA), 12-hydroxyjasmonate (12-OH-JA) and methyljasmonate (JAME) in unimbibed seeds and seedlings of tomato Lycopersicon esculentum Mill cv. Moneymaker (wild type) and tss1, tss2, tos1 mutants. The main compounds in wild-type and tss1, tss2, tos1 seeds were the hydroxylate-JAs; 12-OH-JA was the major component in dry seeds of the wild type and in tss2 and tos1. The amounts of these derivatives were higher in seeds than in seedlings. Changes in JAs during wild-type and tss1 imbibition were analysed in seeds and the imbibition water. In wild-type imbibed seeds, 11-OH-JA content was higher than in tss1. 12-OH-JA showed a different tendency with respect to 11-OH-JA, with high levels in the wild type at early imbibition. In tss1, levels of 12-OH-JA rose from 24 to 48 h of imbibition. At 72 h of imbibition, when radicles had emerged, the amounts of both hydroxylates in wild-type and tss1 seeds were minimal. An important release of the hydroxylate forms was observed in the imbibition water. 11-OH-JA decreased in the imbibition water of wild-type seeds at 48 h. On the contrary, a high and sustained liberation of this compound was observed in tss1 after 24 h. 12-OH-JA increased in wild-type as well in tss1 until 24 h. Thereafter, a substantial reduction in the content of this compound was registered. NaCl-treated wild-type seedlings increased their 12-OH-JA, but tss1 seedlings increased their JA in response to salt treatment. In tss2 seedlings, NaCl caused a slight decrease in 11-OH-JA and JAME, whereas tos1 seedlings showed a dramatic OPDA and 12-OH-JA decrease in response to salt treatment. Under salt stress the mutant seedlings showed different patterns of JAs according to their differential hypersensitivity to abiotic stress. The JA-hydroxylate forms found, and the differential accumulation of JAs during germination, imbibition and seedling development, as well as their response to NaCl stress, provide new evidence about the control of many developmental processes by JA.
Bücher und Buchkapitel

Vaira, A. M.; Acotto, G. P.; Gago-Zachert, S.; Garcia, M. L.; Grau, O.; Milne, R. G.; Morikawa, T.; Natsuaki, T.; Torov, V.; Verbeek, M.; Vetten, H. J.; Genus Ophiovirus 673-679, (2005) ISBN: 9780080575483 DOI: 10.1016/B978-0-12-249951-7.50014-6

0
Publikation

Abdala, G.; Castro, G.; Miersch, O.; Pearce, D.; Changes in jasmonate and gibberellin levels during development of potato plants (Solanum tuberosum) Plant Growth Regul. 36, 121-126, (2002) DOI: 10.1023/A:1015065011536

Among the multiple environmental signals and hormonal factors regulatingpotato plant morphogenesis and controlling tuber induction, jasmonates (JAs)andgibberellins (GAs) are important components of the signalling pathways in theseprocesses. In the present study, with Solanum tuberosum L.cv. Spunta, we followed the endogenous changes of JAs and GAs during thedevelopmental stages of soil-grown potato plants. Foliage at initial growthshowed the highest jasmonic acid (JA) concentration, while in roots the highestcontent was observed in the stage of tuber set. In stolons at the developmentalstage of tuber set an important increase of JA was found; however, in tubersthere was no change in this compound during tuber set and subsequent growth.Methyl jasmonate (Me-JA) in foliage did not show the same pattern as JA; Me-JAdecreased during the developmental stages in which it was monitored, meanwhileJA increased during those stages. The highest total amount of JAs expressed asJA + Me-JA was found at tuber set. A very important peak ofJA in roots was coincident with that observed in stolons at tuber set. Also, aprogressive increase of this compound in roots was shown during the transitionof stolons to tubers. Of the two GAs monitored, gibberellic acid(GA3) was the most abundant in all the organs. While GA1and GA3 were also found in stolons at the time of tuber set, noothermeasurements of GAs were obtained for stolons at previous stages of plantdevelopment. Our results indicate that high levels of JA and GAs are found indifferent tissues, especially during stolon growth and tuber set.
Publikation

Vigliocco, A.; Bonamico, B.; Alemano, S.; Miersch, O.; Abdala, G.; Stimulation of jasmonic acid production in Zea Mays L. infected by the maize rough dwarf virus - Río Cuarto. Reversion of symptoms by salicylic acid Biocell 26, 369-374, (2002)

In the present paper we study the possible biological relevance of endogenous jasmonic acid (JA) and exogenous salicylic acid (SA) in a plant-microbial system maize-virus. The virus disease "Mal de Río Cuarto" is caused by the maize rough dwarf virus - Río Cuarto. The characteristic symptoms are the appearance of galls or "enations" in leaves, shortening of the stem internodes, poor radical system and general stunting. Changes in JA and protein pattern in maize control and infected plants of a virus-tolerant cultivar were investigated. Healthy and infected-leaf discs were collected for JA measurement at different post-infection times (20, 40, 60 and 68 days). JA was also measured in roots on day 60 after infection. For SDS-PAGE protein analysis, leaf discs were also harvested on day 60 after infection. Infected leaves showed higher levels of JA than healthy leaves, and the rise in endogenous JA coincided with the enation formation. The soluble protein amount did not show differences between infected and healthy leaves; moreover, no difference in the expression of soluble protein was revealed by SDS-PAGE. Our results show that the octadecanoid pathway was stimulated in leaves and roots of the tolerant maize cultivar when infected by this virus. This finding, together with fewer plants with the disease symptoms, suggest that higher foliar and roots JA content may be related to disease tolerance. SA exogenous treatment caused the reversion of the dwarfism symptom.
IPB Mainnav Search