zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 3 von 3.

Publikation

Gago, S.; De la Peña, M.; Flores, R.; A kissing-loop interaction in a hammerhead viroid RNA critical for its in vitro folding and in vivo viability RNA 11, 1073-1083, (2005) DOI: 10.1261/rna.2230605

Chrysanthemum chlorotic mottle viroid (CChMVd) RNA (398–401 nucleotides) can form hammerhead ribozymes that play a functional role in its replication through a rolling-circle mechanism. In contrast to most other viroids, which adopt rod-like or quasi-rod-like secondary structures of minimal free energy, the computer-predicted conformations of CChMVd and Peach latent mosaic viroid (PLMVd) RNAs are branched. Moreover, the covariations found in a number of natural CChMVd variants support that the same or a closely related conformation exists in vivo. Here we report that the CChMVd natural variability also supports that the branched conformation is additionally stabilized by a kissing-loop interaction resembling another one proposed in PLMVd from in vitro assays. Moreover, site-directed mutagenesis combined with bioassays and progeny analysis showed that: (1) single CChMVd mutants affecting the kissing loops had low or no infectivity at all, whereas infectivity was recovered in double mutants restoring the interaction; (2) mutations affecting the structure of the regions adjacent to the kissing loops reverted to wild type or led to rearranged stems, also supporting their interaction; and (3) the interchange between 4 nucleotides of each of the two kissing loops generated a viable CChMVd variant with eight mutations. PAGE analysis under denaturing and nondenaturing conditions revealed that the kissing-loop interaction determines proper in vitro folding of CChMVd RNA. Preservation of a similar kissing-loop interaction in two hammerhead viroids with an overall low sequence similarity suggests that it facilitates in vivo the adoption and stabilization of a compact folding critical for viroid viability.
Publikation

Danon, A.; Miersch, O.; Felix, G.; op den Camp, R. G. L.; Apel, K.; Concurrent activation of cell death-regulating signaling pathways by singlet oxygen in Arabidopsis thaliana Plant J. 41, 68-80, (2005) DOI: 10.1111/j.1365-313X.2004.02276.x

Upon a dark/light shift the conditional flu mutant of Arabidopsis starts to generate singlet oxygen (1O2), a non‐radical reactive oxygen species that is restricted to the plastid compartment. Immediately after the shift, plants stop growing and develop necrotic lesions. We have established a protoplast system, which allows detection and characterization of the death response in flu induced by the release of 1O2. Vitamin B6 that quenches 1O2 in fungi was able to protect flu protoplasts from cell death. Blocking ethylene production was sufficient to partially inhibit the death reaction. Similarly, flu mutant seedlings expressing transgenic NahG were partially protected from the death provoked by the release of 1O2, indicating a requirement for salicylic acid (SA) in this process, whereas in cells depleted of both, ethylene and SA, the extent of cell death was reduced to the wild‐type level. The flu mutant was also crossed with the jasmonic acid (JA)‐depleted mutant opr3 , and with the JA, OPDA and dinor OPDA (dnOPDA)‐depleted dde2‐2 mutant. Analysis of the resulting double mutants revealed that in contrast to the JA‐induced suppression of H2O2/superoxide‐dependent cell death reported earlier, JA promotes singlet oxygen‐mediated cell death in flu , whereas other oxylipins such as OPDA and dnOPDA antagonize this death‐inducing activity of JA.
Bücher und Buchkapitel

Vaira, A. M.; Acotto, G. P.; Gago-Zachert, S.; Garcia, M. L.; Grau, O.; Milne, R. G.; Morikawa, T.; Natsuaki, T.; Torov, V.; Verbeek, M.; Vetten, H. J.; Genus Ophiovirus 673-679, (2005) ISBN: 9780080575483 DOI: 10.1016/B978-0-12-249951-7.50014-6

0
IPB Mainnav Search