zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 33.


García, M. L.; Bó, E. D.; da Graça, J. V.; Gago-Zachert, S.; Hammond, J.; Moreno, P.; Natsuaki, T.; Pallás, V.; Navarro, J. A.; Reyes, C. A.; Luna, G. R.; Sasaya, T.; Tzanetakis, I. E.; Vaira, A. M.; Verbeek, M.; ICTV Report Consortium Corrigendum: ICTV Virus Taxonomy Profile: Ophioviridae J Gen Virol 99, 949-949, (2018) DOI: 10.1099/jgv.0.001093


Ziegler, J.; Schmidt, S.; Strehmel, N.; Scheel, D.; Abel, S. Arabidopsis Transporter ABCG37/PDR9 contributes primarily highly oxygenated Coumarins to Root Exudation Sci Rep 7, 3704, (2017) DOI: 10.1038/s41598-017-03250-6

The chemical composition of root exudates strongly impacts the interactions of plants with microorganisms in the rhizosphere and the efficiency of nutrient acquisition. Exudation of metabolites is in part mediated by ATP-binding cassette (ABC) transporters. In order to assess the contribution of individual ABC transporters to root exudation, we performed an LC-MS based non-targeted metabolite profiling of semi-polar metabolites accumulating in root exudates of Arabidopsis thaliana plants and mutants deficient in the expression of ABCG36 (PDR8/PEN3), ABCG37 (PDR9) or both transporters. Comparison of the metabolite profiles indicated distinct roles for each ABC transporter in root exudation. Thymidine exudation could be attributed to ABCG36 function, whereas coumarin exudation was strongly reduced only in ABCG37 deficient plants. However, coumarin exudation was compromised in abcg37 mutants only with respect to certain metabolites of this substance class. The specificity of ABCG37 for individual coumarins was further verified by a targeted LC-MS based coumarin profiling method. The response to iron deficiency, which is known to strongly induce coumarin exudation, was also investigated. In either treatment, the distribution of individual coumarins between roots and exudates in the investigated genotypes suggested the involvement of ABCG37 in the exudation specifically of highly oxygenated rather than monohydroxylated coumarins.

García, M. L.; Bó, E. D.; da Graça, J. V.; Gago-Zachert, S.; Hammond, J.; Moreno, P.; Natsuaki, T.; Pallás, V.; Navarro, J. A.; Reyes, C. A.; Luna, G. R.; Sasaya, T.; Tzanetakis, I. E.; Vaira, A. M.; Verbeek, M.; ICTV Report Consortium ICTV Virus Taxonomy Profile: Ophioviridae J Gen Virol 98 , 1161-1162, (2017) DOI: 10.1099/jgv.0.000836

Ophioviridae,The Ophioviridae is a family of filamentous plant viruses, with single-stranded negative, and possibly ambisense, RNA genomes of 11.3–12.5 kb divided into 3–4 segments, each encapsidated separately. Virions are naked filamentous nucleocapsids, forming kinked circles of at least two different contour lengths. The sole genus, Ophiovirus, includes seven species. Four ophioviruses are soil-transmitted and their natural hosts include trees, shrubs, vegetables and bulbous or corm-forming ornamentals, both monocots and dicots. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the which is available at http://www.ictv.global/report/ophioviridae.

Ziegler, J.; Schmidt, S.; Chutia, R.; Müller, J.; Böttcher, C.; Strehmel, N.; Scheel, D.; Abel, S. Non-targeted profiling of semi-polar metabolites in Arabidopsis root exudates uncovers a role for coumarin secretion and lignification during the local response to phosphate limitation J Exp Bot 67, 1421-1432, (2016) DOI: 10.1093/jxb/erv539

Plants have evolved two major strategies to cope with phosphate (Pi) limitation. The systemic response, mainly comprising increased Pi uptake and metabolic adjustments for more efficient Pi use, and the local response, enabling plants to explore Pi-rich soil patches by reorganization of the root system architecture. Unlike previous reports, this study focused on root exudation controlled by the local response to Pi deficiency. To approach this, a hydroponic system separating the local and systemic responses was developed. Arabidopsis thaliana genotypes exhibiting distinct sensitivities to Pi deficiency could be clearly distinguished by their root exudate composition as determined by non-targeted reversed-phase ultraperformance liquid chromatography electrospray ionization quadrupole-time-of-flight mass spectrometry metabolite profiling. Compared with wild-type plants or insensitive low phosphate root 1 and 2 (lpr1 lpr2) double mutant plants, the hypersensitive phosphate deficiency response 2 (pdr2) mutant exhibited a reduced number of differential features in root exudates after Pi starvation, suggesting the involvement of PDR2-encoded P5-type ATPase in root exudation. Identification and analysis of coumarins revealed common and antagonistic regulatory pathways between Pi and Fe deficiency-induced coumarin secretion. The accumulation of oligolignols in root exudates after Pi deficiency was inversely correlated with Pi starvation-induced lignification at the root tips. The strongest oligolignol accumulation in root exudates was observed for the insensitive lpr1 lpr2 double mutant, which was accompanied by the absence of Pi deficiency-induced lignin deposition, suggesting a role of LPR ferroxidases in lignin polymerization during Pi starvation. 

Strehmel, N.; Mönchgesang, S.; Herklotz, S.; Krüger, S.; Ziegler, J.; Scheel, D. Piriformospora indica Stimulates Root Metabolism of Arabidopsis thaliana Int J Mol Sci 17, 1091, (2016) DOI: 10.3390/ijms17071091

Piriformospora indica is a root-colonizing fungus, which interacts with a variety of plants including Arabidopsis thaliana. This interaction has been considered as mutualistic leading to growth promotion of the host. So far, only indolic glucosinolates and phytohormones have been identified as key players. In a comprehensive non-targeted metabolite profiling study, we analyzed Arabidopsis thaliana’s roots, root exudates, and leaves of inoculated and non-inoculated plants by ultra performance liquid chromatography/electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC/(ESI)-QTOFMS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS), and identified further biomarkers. Among them, the concentration of nucleosides, dipeptides, oligolignols, and glucosinolate degradation products was affected in the exudates. In the root profiles, nearly all metabolite levels increased upon co-cultivation, like carbohydrates, organic acids, amino acids, glucosinolates, oligolignols, and flavonoids. In the leaf profiles, we detected by far less significant changes. We only observed an increased concentration of organic acids, carbohydrates, ascorbate, glucosinolates and hydroxycinnamic acids, and a decreased concentration of nitrogen-rich amino acids in inoculated plants. These findings contribute to the understanding of symbiotic interactions between plant roots and fungi of the order of Sebacinales and are a valid source for follow-up mechanistic studies, because these symbioses are particular and clearly different from interactions of roots with mycorrhizal fungi or dark septate endophytes 

Buhtz, A.; Witzel, K.; Strehmel, N.; Ziegler, J.; Abel, S.; Grosch, R. Perturbations in the Primary Metabolism of Tomato and Arabidopsis thaliana Plants Infected with the Soil-Borne Fungus Verticillium dahliae PLoS ONE 10, e0138242, (2015) DOI: 10.1371/journal.pone.0138242

The hemibiotrophic soil-borne fungus Verticillium dahliae is a major pathogen of a number of economically important crop species. Here, the metabolic response of both tomato and Arabidopsis thaliana to V. dahliae infection was analysed by first using non-targeted GC-MS profiling. The leaf content of both major cell wall components glucuronic acid and xylose was reduced in the presence of the pathogen in tomato but enhanced in A. thaliana. The leaf content of the two tricarboxylic acid cycle intermediates fumaric acid and succinic acid was increased in the leaf of both species, reflecting a likely higher demand for reducing equivalents required for defence responses. A prominent group of affected compounds was amino acids and based on the targeted analysis in the root, it was shown that the level of 12 and four free amino acids was enhanced by the infection in, respectively, tomato and A. thaliana, with leucine and histidine being represented in both host species. The leaf content of six free amino acids was reduced in the leaf tissue of diseased A. thaliana plants, while that of two free amino acids was raised in the tomato plants. This study emphasizes the role of primary plant metabolites in adaptive responses when the fungus has colonized the plant.
Bücher und Buchkapitel

Carbonell, A.; Flores, R.; Gago, S. Hammerhead Ribozymes Against Virus and Viroid RNAs (Erdmann, V. A. & Barciszewski, J., eds.). RNA Technologies 411-427, (2012) ISBN: 978-3-642-27426-8 DOI: 10.1007/978-3-642-27426-8_16

The hammerhead ribozyme, a small catalytic motif that promotes self-cleavage of the RNAs in which it is found naturally embedded, can be manipulated to recognize and cleave specifically in trans other RNAs in the presence of Mg2+. To be really effective, hammerheads need to operate at the low concentration of Mg2+ existing in vivo. Evidence has been gathered along the last years showing that tertiary stabilizing motifs (TSMs), particularly interactions between peripheral loops, are critical for the catalytic activity of hammerheads at physiological levels of Mg2+. These TSMs, in two alternative formats, have been incorporated into a new generation of more efficient trans-cleaving hammerheads, some of which are active in vitro and in planta when targeted against the highly structured RNA of a viroid (a small plant pathogen). This strategy has potential to confer protection against other RNA replicons, like RNA viruses infecting plants and animals.
Bücher und Buchkapitel

Vaira, A. M.; Gago-Zachert, S.; Garcia, M. L.; Guerri, J.; Hammond, J.; Milne, R. G.; Moreno, P.; Morikawa, T.; Natsuaki, T.; Navarro, J. A.; Pallas, V.; Torok, V.; Verbeek, M.; Vetten, H. J. Family - Ophioviridae (King, A. M. Q., et al., eds.). 743-748, (2012) ISBN: 978-0-12-384684-6 DOI: 10.1016/B978-0-12-384684-6.00060-4

This chapter focuses on Ophioviridae family whose sole member genus is Ophiovirus. The member species of the genus include Citrus psorosis virus (CPsV), Freesia sneak virus(FreSV), Lettuce ring necrosis virus (LRNV), and Mirafiori lettuce big-vein virus (MiLBVV).The single stranded negative/possibly ambisense RNA genome is divided into 3–4 segments, each of which is encapsidated in a single coat protein (43–50 kDa) forming filamentous virions of about 3 nm in diameter, in shape of kinked or probably internally coiled circles of at least two different contour lengths. Ophioviruses can be mechanically transmitted to a limited range of test plants, inducing local lesions and systemic mottle. The natural hosts of CPsV, ranunculus white mottle virus (RWMV), MiLBVV, and LRNV are dicotyledonous plants of widely differing taxonomy. CPsV has a wide geographical distribution in citrus in the Americas, in the Mediterranean and in New Zealand. FreSV has been reported in two species of the family Ranunculacae from Northern Italy, and in lettuce in France and Germany. Tulip mild mottle mosaic virus (TMMMV) has been reported in tulips in Japan. LRNV is closely associated with lettuce ring necrosis disease in The Netherlands, Belgium, and France, and FreSV has been reported in Europe, Africa, North America and New Zealand.

Carbonell, A.; Flores, R.; Gago, S. Trans -cleaving hammerhead ribozymes with tertiary stabilizing motifs: in vitro and in vivo activity against a structured viroid RNA Nucleic Acids Research 39, 2432-2444, (2011) DOI: 10.1093/nar/gkq1051

Trans -cleaving hammerheads with discontinuous or extended stem I and with tertiary stabilizing motifs (TSMs) have been tested previously against short RNA substrates in vitro at low Mg 2+ concentration. However, the potential of these ribozymes for targeting longer and structured RNAs in vitro and in vivo has not been examined. Here, we report the in vitro cleavage of short RNAs and of a 464-nt highly structured RNA from potato spindle tuber viroid (PSTVd) by hammerheads with discontinuous and extended formats at submillimolar Mg 2+ . Under these conditions, hammerheads derived from eggplant latent viroid and peach latent mosaic viroid (PLMVd) with discontinuous and extended formats, respectively, where the most active. Furthermore, a PLMVd-derived hammerhead with natural TSMs showed activity in vivo against the same long substrate and interfered with systemic PSTVd infection, thus reinforcing the idea that this class of ribozymes has potential to control pathogenic RNA replicons.

Flores, R.; Grubb, C.D.; Elleuch, A.; Nohales, M.A; Delgado, S.; Gago, S. Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus RNA Biol 8(2), 200-206, (2011) DOI: 10.4161/rna.8.2.14238

Viroids and viroid-like satellite RNAs from plants, and the human hepatitis delta virus (HDV) RNA share some properties that include small size, circularity and replication through a rolling-circle mechanism. Replication occurs in different cell compartments (nucleus, chloroplast and membrane-associated cytoplasmatic vesicles) and has three steps: RNA polymerization, cleavage and ligation. The first step generates oligomeric RNAs that result from the reiterative transcription of the circular templates of one or both polarities, and is catalyzed by either the RNA-dependent RNA polymerase of the helper virus on which viroid-like satellite RNAs are functionally dependent, or by host DNA-dependent RNA polymerases that, remarkably, viroids and HDV redirect to transcribe RNA templates. Cleavage is mediated by host enzymes in certain viroids and viroid-like satellite RNAs, while in others and in HDV is mediated by cis-acting ribozymes of three classes. Ligation appears to be catalyzed mainly by host enzymes. Replication most likely also involves many other non-catalytic proteins of host origin and, in HDV, the single virus-encoded protein.
IPB Mainnav Search