zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 3 von 3.

Publikation

Sreenivasulu, N.; Radchuk, V.; Alawady, A.; Borisjuk, L.; Weier, D.; Staroske, N.; Fuchs, J.; Miersch, O.; Strickert, M.; Usadel, B.; Wobus, U.; Grimm, B.; Weber, H.; Weschke, W.; De-regulation of abscisic acid contents causes abnormal endosperm development in the barley mutant seg8 Plant J. 64, 589-603, (2010) DOI: 10.1111/j.1365-313X.2010.04350.x

Grain development of the maternal effect shrunken endosperm mutant seg8 was analysed by comprehensive molecular, biochemical and histological methods. The most obvious finding was de‐regulation of ABA levels, which were lower compared to wild‐type during the pre‐storage phase but higher during the transition from cell division/differentiation to accumulation of storage products. Ploidy levels and ABA amounts were inversely correlated in the developing endosperms of both mutant and wild‐type, suggesting an influence of ABA on cell‐cycle regulation. The low ABA levels found in seg8 grains between anthesis and beginning endosperm cellularization may result from a gene dosage effect in the syncytial endosperm that causes impaired transfer of ABA synthesized in vegetative tissues into filial grain parts. Increased ABA levels during the transition phase are accompanied by higher chlorophyll and carotenoid/xanthophyll contents. The data suggest a disturbed ABA‐releasing biosynthetic pathway. This is indicated by up‐regulation of expression of the geranylgeranyl reductase (GGR) gene, which may be induced by ABA deficiency during the pre‐storage phase. Abnormal cellularization/differentiation of the developing seg8 endosperm and reduced accumulation of starch are phenotypic characteristics that reflect these disturbances. The present study did not reveal the primary gene defect causing the seg8 phenotype, but presents new insights into the maternal/filial relationships regulating barley endosperm development.
Publikation

Abel, S.; Theologis, A.; Odyssey of Auxin Cold Spring Harb. Perspect. Biol. 2, a004572, (2010) DOI: 10.1101/cshperspect.a004572

The history of plant biology is inexorably intertwined with the conception and discovery of auxin, followed by the many decades of research to comprehend its action during growth and development. Growth responses to auxin are complex and require the coordination of auxin production, transport, and perception. In this overview of past auxin research, we limit our discourse to the mechanism of auxin action. We attempt to trace the almost epic voyage from the birth of the hormonal concept in plants to the recent crystallographic studies that resolved the TIR1-auxin receptor complex, the first structural model of a plant hormone receptor. The century-long endeavor is a beautiful illustration of the power of scientific reasoning and human intuition, but it also brings to light the fact that decisive progress is made when new technologies emerge and disciplines unite.
Publikation

Calderon-Villalobos, L. I.; Tan, X.; Zheng, N.; Estelle, M.; Auxin Perception—Structural Insights Cold Spring Harb. Perspect. Biol. 2, a005546, (2010) DOI: 10.1101/cshperspect.a005546

The identity of the auxin receptor(s) and the mechanism of auxin perception has been a subject of intense interest since the discovery of auxin almost a century ago. The development of genetic approaches to the study of plant hormone signaling led to the discovery that auxin acts by promoting degradation of transcriptional repressors called Aux/IAA proteins. This process requires a ubiquitin protein ligase (E3) called SCFTIR1 and related SCF complexes. Surprisingly, auxin works by directly binding to TIR1, the F-box protein subunit of this SCF. Structural studies demonstrate that auxin acts like a “molecular glue,” to stabilize the interaction between TIR1 and the Aux/IAA substrate. These exciting results solve an old problem in plant biology and reveal new mechanisms for E3 regulation and hormone perception.
IPB Mainnav Search