zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr sort ascending Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 71.

Bücher und Buchkapitel

Vaira, A. M.; Gago-Zachert, S.; Garcia, M. L.; Guerri, J.; Hammond, J.; Milne, R. G.; Moreno, P.; Morikawa, T.; Natsuaki, T.; Navarro, J. A.; Pallas, V.; Torok, V.; Verbeek, M.; Vetten, H. J. Family - Ophioviridae (King, A. M. Q., et al., eds.). 743-748, (2012) ISBN: 978-0-12-384684-6 DOI: 10.1016/B978-0-12-384684-6.00060-4

This chapter focuses on Ophioviridae family whose sole member genus is Ophiovirus. The member species of the genus include Citrus psorosis virus (CPsV), Freesia sneak virus(FreSV), Lettuce ring necrosis virus (LRNV), and Mirafiori lettuce big-vein virus (MiLBVV).The single stranded negative/possibly ambisense RNA genome is divided into 3–4 segments, each of which is encapsidated in a single coat protein (43–50 kDa) forming filamentous virions of about 3 nm in diameter, in shape of kinked or probably internally coiled circles of at least two different contour lengths. Ophioviruses can be mechanically transmitted to a limited range of test plants, inducing local lesions and systemic mottle. The natural hosts of CPsV, ranunculus white mottle virus (RWMV), MiLBVV, and LRNV are dicotyledonous plants of widely differing taxonomy. CPsV has a wide geographical distribution in citrus in the Americas, in the Mediterranean and in New Zealand. FreSV has been reported in two species of the family Ranunculacae from Northern Italy, and in lettuce in France and Germany. Tulip mild mottle mosaic virus (TMMMV) has been reported in tulips in Japan. LRNV is closely associated with lettuce ring necrosis disease in The Netherlands, Belgium, and France, and FreSV has been reported in Europe, Africa, North America and New Zealand.
Bücher und Buchkapitel

Vaira, A.M.; Acotto, G.P.; Gago-Zachert, S.; García, M.L.; Grau, O.; Milne, R.G.; Morikawa, T.; Natsuaki, T.; Torov, V.; Verbeek, M.; Vetten, H.J. Genus Ophiovirus (Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U., Ball, L. A.). Elsevier, Academic Press 673-679, (2005) ISBN: 9780080575483; 9780122499517

Virus Taxonomy is a standard and comprehensive source for the classification of viruses, created by the International Committee of the Taxonomy of Viruses. The book includes eight taxonomic reports of the ICTV and provides comprehensive information on 3 taxonomic orders of viruses, 73 families, 9 subfamilies, 287 genera, and 1938 virus species. The book also features about 429 colored pictures and diagrams for more efficient learning. The text is divided into four parts, comprised of 16 chapters and presenting the following features: • Compiled data from numerous international experts about virus taxonomy and nomenclature • Organized information on over 6000 recognized viruses, illustrated with diagrams of genome organization and virus replication cycle • Data on the phylogenetic relationships among viruses of the same and different taxa • Discussion of the qualitative and quantitative relationships of virus sequences The book is a definitive reference for microbiologists, molecular biologists, research-level virologists, infectious disease specialists, and pharmaceutical researchers working on antiviral agents. Students and novices in taxonomy and nomenclature will also find this text useful. 
Bücher und Buchkapitel

Ziegler, J.; Hussain, H.; Neubert, R. H. H.; Abel, S. Sensitive and Selective Amino Acid Profiling of Minute Tissue Amounts by HPLC/Electrospray Negative Tandem Mass Spectrometry Using 9-Fluorenylmethoxycarbonyl (Fmoc-Cl) Derivatization (Alterman, M. A., ed.). Methods Mol Biol 2030, 365-379, (2019) ISBN: 978-1-4939-9639-1 DOI: 10.1007/978-1-4939-9639-1_27

A method for selective and sensitive quantification of amino acids is described. The combination of established derivatization procedures of secondary and primary amino groups with 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl) and subsequent detection of derivatized amino acids by LC-ESI-MS/MS using multiple reaction monitoring provides high selectivity. The attachment of an apolar moiety enables purification of derivatized amino acids from matrix by a single solid-phase extraction step, which increases sensitivity by reduced ion suppression during LC-ESI-MS/MS detection. Additionally, chromatography of all amino acids can be performed on reversed-phase HPLC columns using eluents without additives, which are known to cause significant decreases in signal to noise ratios. The method has been routinely applied for amino acid profiling of low amounts of liquids and tissues of various origins with a sample throughput of about 50–100 samples a day. In addition to a detailed description of the method, some representative examples are presented.

Costa, C. T.; Strieder, M. L.; Abel, S.; Delatorre, C. A. Phosphorus and nitrogen interaction: loss of QC identity in response to P or N limitation is antecipated in pdr23 mutant Braz J Plant Physiol 23, 219-229, (2011) DOI: 10.1590/S1677-04202011000300006

Changes in root architecture are an important adaptive strategy used by plants in response to limited nutrient availability to increase the odds of acquiring them. The quiescent center (QC) plays an important role by altering the meristem activity causing differentiation and therefore, inducing a determinate growth program. The arabidopsis mutant pdr23 presents primary short root in the presence of nitrate and is inefficient in the use of nucleic acids as a source of phosphorus. In this study the effect of the pdr23 mutation on the QC maintenance under low phosphorus (P) and/or nitrogen is evaluated. QC identity is maintained in wild-type in the absence of nitrate and/or phosphate if nucleic acids can be used as an alternative source of these nutrients, but not in pdr23. The mutant is not able to use nucleic acids efficiently for substitute Pi, determinate growth is observed, similar to wild-type in the total absence of P. In the absence of N pdr23 loses the expression of QC identity marker earlier than wild-type, indicating that not only the response to P is altered, but also to N. The data suggest that the mutation affects a gene involved either in the crosstalk between these nutrients or in a pathway shared by both nutrients limitation response. Moreover loss of QC identity is also observed in wild-type in the absence of N at longer limitation. Less drastic symptoms are observed in lateral roots of both genotypes.

Abel, S. Phosphate sensing in root development Curr Opin Plant Biol 14, 303-309, (2011) DOI: 10.1016/j.pbi.2011.04.007

Phosphate (Pi) and its anhydrides constitute major nodes in metabolism. Thus, plant performance depends directly on Pi nutrition. Inadequate Pi availability in the rhizosphere is a common challenge to plants, which activate metabolic and developmental responses to maximize Pi usage and acquisition. The sensory mechanisms that monitor environmental Pi and transmit the nutritional signal to adjust root development have increasingly come into focus. Recent transcriptomic analyses and genetic approaches have highlighted complex antagonistic interactions between external Pi and Fe bioavailability and have implicated the stem cell niche as a target of Pi sensing to regulate root meristem activity.

Quint, M.; Drost, H.-G.; Gabel, A.; Ullrich, K. K.; Bönn, M.; Grosse, I. A transcriptomic hourglass in plant embryogenesis Nature 490, 98-101, (2012) DOI: 10.1038/nature11394

Animal and plant development starts with a constituting phase called embryogenesis, which evolved independently in both lineages1. Comparative anatomy of vertebrate development—based on the Meckel-Serrès law2 and von Baer’s laws of embryology3 from the early nineteenth century—shows that embryos from various taxa appear different in early stages, converge to a similar form during mid-embryogenesis, and again diverge in later stages. This morphogenetic series is known as the embryonic ‘hourglass’4,5, and its bottleneck of high conservation in mid-embryogenesis is referred to as the phylotypic stage6. Recent analyses in zebrafish and Drosophila embryos provided convincing molecular support for the hourglass model, because during the phylotypic stage the transcriptome was dominated by ancient genes7 and global gene expression profiles were reported to be most conserved8. Although extensively explored in animals, an embryonic hourglass has not been reported in plants, which represent the second major kingdom in the tree of life that evolved embryogenesis. Here we provide phylotranscriptomic evidence for a molecular embryonic hourglass in Arabidopsis thaliana, using two complementary approaches. This is particularly significant because the possible absence of an hourglass based on morphological features in plants suggests that morphological and molecular patterns might be uncoupled. Together with the reported developmental hourglass patterns in animals, these findings indicate convergent evolution of the molecular hourglass and a conserved logic of embryogenesis across kingdoms.

Kopycki, J.; Schmidt, J.; Abel, S.; Grubb, C. D. Chemoenzymatic synthesis of diverse thiohydroximates from glucosinolate-utilizing enzymes from Helix pomatia and Caldicellulosiruptor saccharolyticus Biotechnol Lett 33, 1039-1046, (2011) DOI: 10.1007/s10529-011-0530-y

Thiohydroximates comprise a diverse class of compounds important in both biological and industrial chemistry. Their syntheses are generally limited to simple alkyl and aryl compounds with few stereocenters and a narrow range of functional groups. We hypothesized that sequential action of two recombinant enzymes, a sulfatase from Helix pomatia and a β-O-glucosidase from Caldicellulosiruptor saccharolyticus, on glucosinolates would allow synthesis of thiohydroximates from a structurally broad array of abundant precursors. We report successful synthesis of thiohydroximates of varied chemical classes, including from homochiral compounds of demonstrated biological activity. The chemoenzymatic synthetic route reported here should allow access to many, if not all, of the thiohydroximate core structures of the ~200 known naturally occurring glucosinolates. The enrichment of this group for compounds with possible pharmacological potential is discussed.

Abel, S.; Theologis, A. Odyssey of Auxin Cold Spring Harb Perspect Biol 2, a004572, (2010) DOI: 10.1101/cshperspect.a004572

The history of plant biology is inexorably intertwined with the conception and discovery of auxin, followed by the many decades of research to comprehend its action during growth and development. Growth responses to auxin are complex and require the coordination of auxin production, transport, and perception. In this overview of past auxin research, we limit our discourse to the mechanism of auxin action. We attempt to trace the almost epic voyage from the birth of the hormonal concept in plants to the recent crystallographic studies that resolved the TIR1-auxin receptor complex, the first structural model of a plant hormone receptor. The century-long endeavor is a beautiful illustration of the power of scientific reasoning and human intuition, but it also brings to light the fact that decisive progress is made when new technologies emerge and disciplines unite.

Balzergue, C.; Dartevelle, T.; Godon, C.; Laugier, E.; Meisrimler, C.; Teulon, J.-M.; Creff, A.; Bissler, M.; Brouchoud, C.; Hagège, A.; Müller, J.; Chiarenza, S.; Javot, H.; Becuwe-Linka, N.; David, P.; Péret, B.; Delannoy, E.; Thibaud, M.-C.; Armengaud, J.; Abel, S.; Pellequer, J.-L.; Nussaume, L.; Desnos, T. Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation Nat Commun 8, 15300, (2017) DOI: 10.1038/ncomms15300

Environmental cues profoundly modulate cell proliferation and cell elongation to inform and direct plant growth and development. External phosphate (Pi) limitation inhibits primary root growth in many plant species. However, the underlying Pi sensory mechanisms are unknown. Here we genetically uncouple two Pi sensing pathways in the root apex of Arabidopsis thaliana. First, the rapid inhibition of cell elongation in the transition zone is controlled by transcription factor STOP1, by its direct target, ALMT1, encoding a malate channel, and by ferroxidase LPR1, which together mediate Fe and peroxidase-dependent cell wall stiffening. Second, during the subsequent slow inhibition of cell proliferation in the apical meristem, which is mediated by LPR1-dependent, but largely STOP1–ALMT1-independent, Fe and callose accumulate in the stem cell niche, leading to meristem reduction. Our work uncovers STOP1 and ALMT1 as a signalling pathway of low Pi availability and exuded malate as an unexpected apoplastic inhibitor of root cell wall expansion.

Kopycki, J.; Wieduwild, E.; Kohlschmidt, J.; Brandt, W.; Stepanova, A.N.; Alonso, J.M.; Pedras, M.S.; Abel, S.; Grubb, C.D. Kinetic analysis of Arabidopsis glucosyltransferase UGT74B1 illustrates a general mechanism by which enzymes can escape product inhibition Biochem J 450, 37-46, (2013) DOI: 10.1042/BJ20121403

Plant genomes encode numerous small molecule glycosyltransferases which modulate the solubility, activity, immunogenicity and/or reactivity of hormones, xenobiotics and natural products. The products of these enzymes can accumulate to very high concentrations, yet somehow avoid inhibiting their own biosynthesis. Glucosyltransferase UGT74B1 (UDP-glycosyltransferase 74B1) catalyses the penultimate step in the core biosynthetic pathway of glucosinolates, a group of natural products with important functions in plant defence against pests and pathogens. We found that mutation of the highly conserved Ser284 to leucine [wei9-1 (weak ethylene insensitive)] caused only very mild morphological and metabolic phenotypes, in dramatic contrast with knockout mutants, indicating that steady state glucosinolate levels are actively regulated even in unchallenged plants. Analysis of the effects of the mutation via a structural modelling approach indicated that the affected serine interacts directly with UDP-glucose, but also predicted alterations in acceptor substrate affinity and the kcat value, sparking an interest in the kinetic behaviour of the wild-type enzyme. Initial velocity and inhibition studies revealed that UGT74B1 is not inhibited by its glycoside product. Together with the effects of the missense mutation, these findings are most consistent with a partial rapid equilibrium ordered mechanism. This model explains the lack of product inhibition observed both in vitro and in vivo, illustrating a general mechanism whereby enzymes can continue to function even at very high product/precursor ratios.
IPB Mainnav Search