zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 4 von 4.

Publikation

Stumpe, M.; Göbel, C.; Faltin, B.; Beike, A. K.; Hause, B.; Himmelsbach, K.; Bode, J.; Kramell, R.; Wasternack, C.; Frank, W.; Reski, R.; Feussner, I.; The moss Physcomitrella patens contains cyclopentenones but no jasmonates: mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology New Phytol. 188, 740-749, (2010) DOI: 10.1111/j.1469-8137.2010.03406.x

Two cDNAs encoding allene oxide cyclases (PpAOC1, PpAOC2), key enzymes in the formation of jasmonic acid (JA) and its precursor (9S,13S)‐12‐oxo‐phytodienoic acid (cis‐(+)‐OPDA), were isolated from the moss Physcomitrella patens.Recombinant PpAOC1 and PpAOC2 show substrate specificity against the allene oxide derived from 13‐hydroperoxy linolenic acid (13‐HPOTE); PpAOC2 also shows substrate specificity against the allene oxide derived from 12‐hydroperoxy arachidonic acid (12‐HPETE).In protonema and gametophores the occurrence of cis‐(+)‐OPDA, but neither JA nor the isoleucine conjugate of JA nor that of cis‐(+)‐OPDA was detected.Targeted knockout mutants for PpAOC1 and for PpAOC2 were generated, while double mutants could not be obtained. The ΔPpAOC1 and ΔPpAOC2 mutants showed reduced fertility, aberrant sporophyte morphology and interrupted sporogenesis.
Publikation

Abel, S.; Theologis, A.; Odyssey of Auxin Cold Spring Harb. Perspect. Biol. 2, a004572, (2010) DOI: 10.1101/cshperspect.a004572

The history of plant biology is inexorably intertwined with the conception and discovery of auxin, followed by the many decades of research to comprehend its action during growth and development. Growth responses to auxin are complex and require the coordination of auxin production, transport, and perception. In this overview of past auxin research, we limit our discourse to the mechanism of auxin action. We attempt to trace the almost epic voyage from the birth of the hormonal concept in plants to the recent crystallographic studies that resolved the TIR1-auxin receptor complex, the first structural model of a plant hormone receptor. The century-long endeavor is a beautiful illustration of the power of scientific reasoning and human intuition, but it also brings to light the fact that decisive progress is made when new technologies emerge and disciplines unite.
Publikation

Weigelt, K.; Küster, H.; Rutten, T.; Fait, A.; Fernie, A. R.; Miersch, O.; Wasternack, C.; Emery, R. J. N.; Desel, C.; Hosein, F.; Müller, M.; Saalbach, I.; Weber, H.; ADP-Glucose Pyrophosphorylase-Deficient Pea Embryos Reveal Specific Transcriptional and Metabolic Changes of Carbon-Nitrogen Metabolism and Stress Responses Plant Physiol. 149, 395-411, (2009) DOI: 10.1104/pp.108.129940

We present a comprehensive analysis of ADP-glucose pyrophosphorylase (AGP)-repressed pea (Pisum sativum) seeds using transcript and metabolite profiling to monitor the effects that reduced carbon flow into starch has on carbon-nitrogen metabolism and related pathways. Changed patterns of transcripts and metabolites suggest that AGP repression causes sugar accumulation and stimulates carbohydrate oxidation via glycolysis, tricarboxylic acid cycle, and mitochondrial respiration. Enhanced provision of precursors such as acetyl-coenzyme A and organic acids apparently support other pathways and activate amino acid and storage protein biosynthesis as well as pathways fed by cytosolic acetyl-coenzyme A, such as cysteine biosynthesis and fatty acid elongation/metabolism. As a consequence, the resulting higher nitrogen (N) demand depletes transient N storage pools, specifically asparagine and arginine, and leads to N limitation. Moreover, increased sugar accumulation appears to stimulate cytokinin-mediated cell proliferation pathways. In addition, the deregulation of starch biosynthesis resulted in indirect changes, such as increased mitochondrial metabolism and osmotic stress. The combined effect of these changes is an enhanced generation of reactive oxygen species coupled with an up-regulation of energy-dissipating, reactive oxygen species protection, and defense genes. Transcriptional activation of mitogen-activated protein kinase pathways and oxylipin synthesis indicates an additional activation of stress signaling pathways. AGP-repressed embryos contain higher levels of jasmonate derivatives; however, this increase is preferentially in nonactive forms. The results suggest that, although metabolic/osmotic alterations in iAGP pea seeds result in multiple stress responses, pea seeds have effective mechanisms to circumvent stress signaling under conditions in which excessive stress responses and/or cellular damage could prematurely initiate senescence or apoptosis.
Publikation

Ticconi, C. A.; Lucero, R. D.; Sakhonwasee, S.; Adamson, A. W.; Creff, A.; Nussaume, L.; Desnos, T.; Abel, S.; ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability Proc. Natl. Acad. Sci. U.S.A. 106, 14174-14179, (2009) DOI: 10.1073/pnas.0901778106

Inadequate availability of inorganic phosphate (Pi) in the rhizosphere is a common challenge to plants, which activate metabolic and developmental responses to maximize Pi acquisition. The sensory mechanisms that monitor environmental Pi status and regulate root growth via altered meristem activity are unknown. Here, we show that phosphate deficiency response 2 (PDR2) encodes the single P5-type ATPase of Arabidopsis thaliana. PDR2 functions in the endoplasmic reticulum (ER) and is required for proper expression of scarecrow (SCR), a key regulator of root patterning, and for stem-cell maintenance in Pi-deprived roots. We further show that the multicopper oxidase encoded by low phosphate root 1 (LPR1) is targeted to the ER and that LPR1 and PDR2 interact genetically. Because the expression domains of both genes overlap in the stem-cell niche and distal root meristem, we propose that PDR2 and LPR1 function together in an ER-resident pathway that adjusts root meristem activity to external Pi. Our data indicate that the Pi-conditional root phenotype of pdr2 is not caused by increased Fe availability in low Pi; however, Fe homeostasis modifies the developmental response of root meristems to Pi availability.
IPB Mainnav Search