zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 4 von 4.


Stumpe, M.; Göbel, C.; Faltin, B.; Beike, A. K.; Hause, B.; Himmelsbach, K.; Bode, J.; Kramell, R.; Wasternack, C.; Frank, W.; Reski, R.; Feussner, I. The moss Physcomitrella patens contains cyclopentenones but no jasmonates: mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology New Phytol 188 (3), 740-749, (2010) DOI: 10.1111/j.1469-8137.2010.03406.x

Two cDNAs encoding allene oxide cyclases (PpAOC1, PpAOC2), key enzymes in the formation of jasmonic acid (JA) and its precursor (9S,13S)‐12‐oxo‐phytodienoic acid (cis‐(+)‐OPDA), were isolated from the moss Physcomitrella patens.Recombinant PpAOC1 and PpAOC2 show substrate specificity against the allene oxide derived from 13‐hydroperoxy linolenic acid (13‐HPOTE); PpAOC2 also shows substrate specificity against the allene oxide derived from 12‐hydroperoxy arachidonic acid (12‐HPETE).In protonema and gametophores the occurrence of cis‐(+)‐OPDA, but neither JA nor the isoleucine conjugate of JA nor that of cis‐(+)‐OPDA was detected.Targeted knockout mutants for PpAOC1 and for PpAOC2 were generated, while double mutants could not be obtained. The ΔPpAOC1 and ΔPpAOC2 mutants showed reduced fertility, aberrant sporophyte morphology and interrupted sporogenesis.

Abel, S.; Theologis, A. Odyssey of Auxin Cold Spring Harb Perspect Biol 2, a004572, (2010) DOI: 10.1101/cshperspect.a004572

The history of plant biology is inexorably intertwined with the conception and discovery of auxin, followed by the many decades of research to comprehend its action during growth and development. Growth responses to auxin are complex and require the coordination of auxin production, transport, and perception. In this overview of past auxin research, we limit our discourse to the mechanism of auxin action. We attempt to trace the almost epic voyage from the birth of the hormonal concept in plants to the recent crystallographic studies that resolved the TIR1-auxin receptor complex, the first structural model of a plant hormone receptor. The century-long endeavor is a beautiful illustration of the power of scientific reasoning and human intuition, but it also brings to light the fact that decisive progress is made when new technologies emerge and disciplines unite.

Parry, G.; Calderón Villalobos, L.I.; Prigge, M.; Peret, B.; Dharmasiri, S.; Itoh, H.; Lechner, E.; Gray, W.M.; Bennett, M.; Estelle, M. Complex regulation of the TIR/AFB family of auxin receptors Proc Natl Acad Sci USA 106(52), 22540-22545, (2009) DOI: 10.1073/pnas.0911967106

Auxin regulates most aspects of plant growth and development. The hormone is perceived by the TIR1/AFB family of F-box proteins acting in concert with the Aux/IAA transcriptional repressors. Arabidopsis plants that lack members of the TIR1/AFB family are auxin resistant and display a variety of growth defects. However, little is known about the functional differences between individual members of the family. Phylogenetic studies reveal that the TIR1/AFB proteins are conserved across land plant lineages and fall into four clades. Three of these subgroups emerged before separation of angiosperms and gymnosperms whereas the last emerged before the monocot-eudicot split. This evolutionary history suggests that the members of each clade have distinct functions. To explore this possibility in Arabidopsis, we have analyzed a range of mutant genotypes, generated promoter swap transgenic lines, and performed in vitro binding assays between individual TIR1/AFB and Aux/IAA proteins. Our results indicate that the TIR1/AFB proteins have distinct biochemical activities and that TIR1 and AFB2 are the dominant auxin receptors in the seedling root. Further, we demonstrate that TIR1, AFB2, and AFB3, but not AFB1 exhibit significant posttranscriptional regulation. The microRNA miR393 is expressed in a pattern complementary to that of the auxin receptors and appears to regulate TIR1/AFB expression. However our data suggest that this regulation is complex. Our results suggest that differences between members of the auxin receptor family may contribute to the complexity of auxin response.

Quint, M.; Barkawi, L.S.; Fan, K.T.; Cohen, J.D.; Gray, W.M. Arabidopsis IAR4 modulates auxin response by regulating auxin homeostasis Plant Physiol 150, 748-758, (2009) DOI: 10.1104/pp.109.136671

In a screen for enhancers of tir1-1 auxin resistance, we identified two novel alleles of the putative mitochondrial pyruvate dehydrogenase E1α-subunit, IAA-Alanine Resistant4 (IAR4). In addition to enhancing the auxin response defects of tir1-1, iar4 single mutants exhibit numerous auxin-related phenotypes including auxin-resistant root growth and reduced lateral root development, as well as defects in primary root growth, root hair initiation, and root hair elongation. Remarkably, all of these iar4 mutant phenotypes were rescued when endogenous indole-3-acetic acid (IAA) levels were increased by growth at high temperature or overexpression of the YUCCA1 IAA biosynthetic enzyme, suggesting that iar4 mutations may alter IAA homeostasis rather than auxin response. Consistent with this possibility, iar4 mutants exhibit increased Aux/IAA stability compared to wild type under basal conditions, but not in response to an auxin treatment. Measurements of free IAA levels detected no significant difference between iar4-3 and wild-type controls. However, we consistently observed significantly higher levels of IAA-amino acid conjugates in the iar4-3 mutant. Furthermore, using stable isotope-labeled IAA precursors, we observed a significant increase in the relative utilization of the Trp-independent IAA biosynthetic pathway in iar4-3. We therefore suggest that the auxin phenotypes of iar4 mutants are the result of altered IAA homeostasis.
IPB Mainnav Search