zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 2 von 2.

Publikation

Abel, S.; Auxin Is Surfacing ACS Chem. Biol. 2, 380-384, (2007) DOI: 10.1021/cb7001158

Indole-3-acetic acid (IAA or auxin) is essential throughout the life cycle of a plant. It controls diverse cellular processes, including gene expression. The hormone is perceived by a ubiquitin protein ligase (E3) and triggers the rapid destruction of repressors, called Aux/IAA proteins. The first structural model of a plant hormone receptor illustrates how auxin promotes Aux/IAA substrate recruitment by extending the hydrophobic protein-interaction surface. This work establishes a novel mechanism of E3 regulation by small molecules and promises a novel strategy for the treatment of human disorders associated with defective ubiquitin-dependent proteolysis.
Publikation

Vigliocco, A.; Alemano, S.; Miersch, O.; Alvarez, D.; Abdala, G.; Endogenous jasmonates in dry and imbibed sunflower seeds from plants grown at different soil moisture contents Seed Sci. Res. 17, 91-98, (2007) DOI: 10.1017/S0960258507708371

In this study, we characterized two sunflower (Helianthus annuus L.) lines with differential sensitivity to drought, the sensitive line B59 and the tolerant line B71. Using both lines, we compared the content of endogenous jasmonates (JAs) in dry and imbibed seeds from plants grown under irrigation and drought. Jasmonic acid (JA), 12-oxo-phytodienoic acid (OPDA), 11-hydroxyjasmonate (11-OH-JA) and 12-hydroxyjasmonate (12-OH-JA) were detected in dry and imbibed sunflower seeds. Seeds from plants grown under drought had a lower content of total JAs and exhibited higher germination percentages than seeds from irrigated plants, demonstrating that environmental conditions have a strong influence on the progeny. OPDA and 12-OH-JA were the main compounds found in dry seeds of both lines. Imbibed seeds showed an enhanced amount of total JAs with respect to dry seeds produced by plants grown in both soil moisture conditions. Imbibition triggered a dramatic OPDA increase in the embryo, suggesting a role of this compound in germination. We conclude that JAs patterns vary during sunflower germination and that the environmental conditions experienced by the mother plant modify the hormonal content of the seed progeny.
IPB Mainnav Search