zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 4 von 4.

Preprints

Zang, J.; Klemm, S.; Pain, C.; Duckney, P.; Bao, Z.; Stamm, G.; Kriechbaumer, V.; Bürstenbinder, K.; Hussey, P. J.; Wang, P.; A Novel Plant Actin-Microtubule Bridging Complex Regulates Cytoskeletal and ER Structure at Endoplasmic Reticulum-Plasma Membrane Contact Sites (EPCS) SSRN Electronic Journal (2020) DOI: 10.2139/ssrn.3581370

In plants, the cortical ER network is connected to the plasma membrane through the ER-PM contact sites (EPCS), whose structures are maintained by EPCS resident proteins and the cytoskeleton. Strong co-alignment between EPCS and the cytoskeleton is observed in plants, but little is known of how the cytoskeleton is maintained and regulated at the EPCS. Here we have used a yeast-two-hybrid screen and subsequent in vivo interaction studies in plants by FRET-FLIM analysis, to identify two microtubule binding proteins, KLCR1 (Kinesin Light Chain Related protein 1) and IQD2 (IQ67-Domain 2) that interact with the actin binding protein NET3C and form a component of plant EPCS, that mediates the link between the actin and microtubule networks. The NET3C-KLCR1-IQD2 module, acting as an actin-microtubule bridging complex, has a direct influence on ER morphology. Their loss of function mutants, net3a/NET3C RNAi, 0klcr1 or iqd2, exhibit defects in pavement cell morphology which we suggest is linked to the disorganization of both actin filaments and microtubules. In conclusion, our results reveal a novel cytoskeletal associated complex, which is essential for the maintenance and organization of both cytoskeletal structure and ER morphology at the EPCS, and for normal plant cell morphogenesis.
Preprints

Stephani, M.; Picchianti, L.; Gajic, A.; Beveridge, R.; Skarwan, E.; Sanchez de Medina Hernandez, V.; Mohseni, A.; Clavel, M.; Zeng, Y.; Naumann, C.; Matuszkiewicz, M.; Turco, E.; Loefke, C.; Li, B.; Durnberger, G.; Schutzbier, M.; Chen, H. T.; Abdrakhmanov, A.; Savova, A.; Chia, K.-S.; Djamei, A.; Schaffner, I.; Abel, S.; Jiang, L.; Mechtler, K.; Ikeda, F.; Martens, S.; Clausen, T.; Dagdas, Y.; A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress bioRxiv (2020) DOI: 10.1101/2020.03.18.995316

Eukaryotes have evolved various quality control mechanisms to promote proteostasis in the ER. Selective removal of certain ER domains via autophagy (termed as ER-phagy) has emerged as a major quality control mechanism. However, the degree to which ER-phagy is employed by other branches of ER-quality control remains largely elusive. Here, we identify a cytosolic protein, C53, that is specifically recruited to autophagosomes during ER-stress, in both plant and mammalian cells. C53 interacts with ATG8 via a distinct binding epitope, featuring a shuffled ATG8 interacting motif (sAIM). C53 senses proteotoxic stress in the ER lumen by forming a tripartite receptor complex with the ER-associated ufmylation ligase UFL1 and its membrane adaptor DDRGK1. The C53/UFL1/DDRGK1 receptor complex is activated by stalled ribosomes and induces the degradation of internal or passenger proteins in the ER. Consistently, the C53 receptor complex and ufmylation mutants are highly susceptible to ER stress. Thus, C53 forms an ancient quality control pathway that bridges selective autophagy with ribosome-associated quality control at the ER.
Publikation

Stephani, M.; Picchianti, L.; Gajic, A.; Beveridge, R.; Skarwan, E.; Sanchez de Medina Hernandez, V.; Mohseni, A.; Clavel, M.; Zeng, Y.; Naumann, C.; Matuszkiewicz, M.; Turco, E.; Loefke, C.; Li, B.; Durnberger, G.; Schutzbier, M.; Chen, H. T.; Abdrakhmanov, A.; Savova, A.; Chia, K.-S.; Djamei, A.; Schaffner, I.; Abel, S.; Jiang, L.; Mechtler, K.; Ikeda, F.; Martens, S.; Clausen, T.; Dagdas, Y.; A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress eLife 9, e58396, (2020) DOI: 10.7554/elife.58396

Eukaryotes have evolved various quality control mechanisms to promote proteostasis in the endoplasmic reticulum (ER). Selective removal of certain ER domains via autophagy (termed as ER-phagy) has emerged as a major quality control mechanism. However, the degree to which ER-phagy is employed by other branches of ER-quality control remains largely elusive. Here, we identify a cytosolic protein, C53, that is specifically recruited to autophagosomes during ER-stress, in both plant and mammalian cells. C53 interacts with ATG8 via a distinct binding epitope, featuring a shuffled ATG8 interacting motif (sAIM). C53 senses proteotoxic stress in the ER lumen by forming a tripartite receptor complex with the ER-associated ufmylation ligase UFL1 and its membrane adaptor DDRGK1. The C53/UFL1/DDRGK1 receptor complex is activated by stalled ribosomes and induces the degradation of internal or passenger proteins in the ER. Consistently, the C53 receptor complex and ufmylation mutants are highly susceptible to ER stress. Thus, C53 forms an ancient quality control pathway that bridges selective autophagy with ribosome-associated quality control in the ER.
Publikation

Niemeyer, M.; Moreno Castillo, E.; Ihling, C. H.; Iacobucci, C.; Wilde, V.; Hellmuth, A.; Hoehenwarter, W.; Samodelov, S. L.; Zurbriggen, M. D.; Kastritis, P. L.; Sinz, A.; Calderón Villalobos, L. I. A.; Flexibility of intrinsically disordered degrons in AUX/IAA proteins reinforces auxin co-receptor assemblies Nat. Commun. 11, 2277, (2020) DOI: 10.1038/s41467-020-16147-2

Cullin RING-type E3 ubiquitin ligases SCFTIR1/AFB1-5 and their AUX/IAA targets perceive the phytohormone auxin. The F-box protein TIR1 binds a surface-exposed degron in AUX/IAAs promoting their ubiquitylation and rapid auxin-regulated proteasomal degradation. Here, by adopting biochemical, structural proteomics and in vivo approaches we unveil how flexibility in AUX/IAAs and regions in TIR1 affect their conformational ensemble allowing surface accessibility of degrons. We resolve TIR1·auxin·IAA7 and TIR1·auxin·IAA12 complex topology, and show that flexible intrinsically disordered regions (IDRs) in the degron’s vicinity, cooperatively position AUX/IAAs on TIR1. We identify essential residues at the TIR1 N- and C-termini, which provide non-native interaction interfaces with IDRs and the folded PB1 domain of AUX/IAAs. We thereby establish a role for IDRs in modulating auxin receptor assemblies. By securing AUX/IAAs on two opposite surfaces of TIR1, IDR diversity supports locally tailored positioning for targeted ubiquitylation, and might provide conformational flexibility for a multiplicity of functional states.
IPB Mainnav Search