zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 72.

Publikation

Nietzschmann, L.; Smolka, U.; Perino, E. H. B.; Gorzolka, K.; Stamm, G.; Marillonnet, S.; Bürstenbinder, K.; Rosahl, S.; The secreted PAMP-induced peptide StPIP1_1 activates immune responses in potato Sci. Rep. 13, 20534, (2023) DOI: 10.1038/s41598-023-47648-x

Treatment of potato plants with the pathogen-associated molecular pattern Pep-13 leads to the activation of more than 1200 genes. One of these, StPIP1_1, encodes a protein of 76 amino acids with sequence homology to PAMP-induced secreted peptides (PIPs) from Arabidopsis thaliana. Expression of StPIP1_1 is also induced in response to infection with Phytophthora infestans, the causal agent of late blight disease. Apoplastic localization of StPIP1_1-mCherry fusion proteins is dependent on the presence of the predicted signal peptide. A synthetic peptide corresponding to the last 13 amino acids of StPIP1_1 elicits the expression of the StPIP1_1 gene itself, as well as that of pathogenesis related genes. The oxidative burst induced by exogenously applied StPIP1_1 peptide in potato leaf disks is dependent on functional StSERK3A/B, suggesting that StPIP1_1 perception occurs via a receptor complex involving the co-receptor StSERK3A/B. Moreover, StPIP1_1 induces expression of FRK1 in Arabidopsis in an RLK7-dependent manner. Expression of an RLK from potato with high sequence homology to AtRLK7 is induced by StPIP1_1, by Pep-13 and in response to infection with P. infestans. These observations are consistent with the hypothesis that, upon secretion, StPIP1_1 acts as an endogenous peptide required for amplification of the defense response.
Bücher und Buchkapitel

Klemm, S.; Buhl, J.; Möller, B.; Bürstenbinder, K.; Quantitative analysis of microtubule organization in leaf epidermis pavement cells (Hussey, P.J., Wang, P.). The Plant Cytoskeleton 2604, 43-61, (2023) ISBN: 978-1-0716-2866-9 DOI: 10.1007/978-1-0716-2867-6_4

Leaf epidermis pavement cells form highly complex shapes with interlocking lobes and necks at their anticlinal walls. The microtubule cytoskeleton plays essential roles in pavement cell morphogenesis, in particular at necks. Vice versa, shape generates stress patterns that regulate microtubule organization. Genetic or pharmacological perturbations that affect pavement cell shape often affect microtubule organization. Pavement cell shape and microtubule organization are therefore closely interconnected. Here, we present commonly used approaches for the quantitative analysis of pavement cell shape characteristics and of microtubule organization. In combination with ablation experiments, these methods can be applied to investigate how different genotypes (or treatments) affect the organization and stress responsiveness of the microtubule cytoskeleton.
Publikation

Yang, B.; Stamm, G.; Bürstenbinder, K.; Voiniciuc, C.; Microtubule‐associated IQD9 orchestrates cellulose patterning in seed mucilage New Phytol. 235, 1096-1110, (2022) DOI: 10.1111/nph.18188

Arabidopsis seeds release large capsules of mucilaginous polysaccharides, which are shaped by an intricate network of cellulosic microfibrils. Cellulose synthase complexes are guided by the microtubule cytoskeleton, but it is unclear which proteins mediate this process in the seed coat epidermis. Using reverse genetics, we identified IQ67 DOMAIN 9 (IQD9) and KINESIN LIGHT CHAIN-RELATED 1 (KLCR1) as two highly expressed genes during seed development and comprehensively characterized their roles in cell wall polysaccharide biosynthesis. Mutations in IQD9 as well as in KLCR1 lead to compact mucilage capsules with aberrant cellulose distribution, which can be rescued by transgene complementation. IQD9 physically interacts with KLCR1 and localizes to cortical MTs to maintain their organization in SCE cells. IQD9 as well as a previously identified TONNEAU1 (TON1) RECRUITING MOTIF 4 (TRM4) protein act to maintain cellulose synthase velocity. Our results demonstrate that IQD9, KLCR1 and TRM4 are MT-associated proteins that are required for seed mucilage architecture. This study provides the first direct evidence that members of the IQD, KLCR and TRM families have overlapping roles in cell wall biosynthesis. Therefore, SCE cells provide an attractive system to further decipher the complex genetic regulation of polarized cellulose deposition.
Preprints

Yang, B.; Stamm, G.; Bürstenbinder, K.; Voiniciuc, C.; Microtubule-associated IQD9 guides cellulose synthase velocity to shape seed mucilage bioRxiv (2021) DOI: 10.1101/2021.12.11.472226

SummaryArabidopsis seeds release large capsules of mucilaginous polysaccharides, which are shaped by an intricate network of cellulosic microfibrils. Cellulose synthase complexes is guided by the microtubule cytoskeleton, but it is unclear which proteins mediate this process in the seed coat epidermis (SCE).Using reverse genetics, we identified IQ67 DOMAIN 9 (IQD9) and KINESIN LIGHT CHAIN-RELATED 1 (KLCR1) as two highly expressed genes during seed development and comprehensively characterized their roles for cell wall polysaccharide biosynthesis and cortical microtubule (MT) organization.Mutations in IQD9 as well as in KLCR1 lead to compact mucilage capsules with aberrant cellulose distribution, which can be rescued by transgene complementation. Double mutant analyses revealed that their closest paralogs (IQD10 and KLCR2, respectively) are not required for mucilage biosynthesis. IQD9 physically interacts with KLCR1 and localizes to cortical MTs to maintain their organization in SCE cells. Similar to the previously identified TONNEAU1 (TON1) RECRUITING MOTIF 4 (TRM4) protein, IQD9 is required to maintain the velocity of cellulose synthases.Our results demonstrate that IQD9, KLCR1 and TRM4 are MT-associated proteins that are required for seed mucilage architecture. This study provides the first direct evidence that members of the IQD, KLCR and TRM families have overlapping roles in guiding the distribution of cell wall polysaccharides. Therefore, SCE cells provide an attractive system to further decipher the complex genetic regulation of polarized cellulose deposition.
Publikation

Zang, J.; Klemm, S.; Pain, C.; Duckney, P.; Bao, Z.; Stamm, G.; Kriechbaumer, V.; Bürstenbinder, K.; Hussey, P. J.; Wang, P.; A novel plant actin-microtubule bridging complex regulates cytoskeletal and ER structure at ER-PM contact sites Curr. Biol. 31, 1251-1260, (2021) DOI: 10.1016/j.cub.2020.12.009

In plants, the cortical endoplasmic reticulum (ER) network is connected to the plasma membrane (PM) through the ER-PM contact sites (EPCSs), whose structures are maintained by EPCS resident proteins and the cytoskeleton.1-7 Strong co-alignment between EPCSs and the cytoskeleton is observed in plants,1,8 but little is known of how the cytoskeleton is maintained and regulated at the EPCS. Here, we have used a yeast-two-hybrid screen and subsequent in vivo interaction studies in plants by fluorescence resonance energy transfer (FRET)-fluorescence lifetime imaging microscopy (FLIM) analysis to identify two microtubule binding proteins, KLCR1 (kinesin-light-chain-related protein 1) and IQD2 (IQ67-domain 2), that interact with the actin binding protein NET3C and form a component of plant EPCS that mediates the link between the actin and microtubule networks. The NET3C-KLCR1-IQD2 module, acting as an actin-microtubule bridging complex, has a direct influence on ER morphology and EPCS structure. Their loss-of-function mutants, net3a/NET3C RNAi, klcr1, or iqd2, exhibit defects in pavement cell morphology, which we suggest is linked to the disorganization of both actin filaments and microtubules. In conclusion, our results reveal a novel cytoskeletal-associated complex, which is essential for the maintenance and organization of cytoskeletal structure and ER morphology at the EPCS and for normal plant cell morphogenesis.
Publikation

Kumari, P.; Dahiya, P.; Livanos, P.; Zergiebel, L.; Kölling, M.; Poeschl, Y.; Stamm, G.; Hermann, A.; Abel, S.; Müller, S.; Bürstenbinder, K.; IQ67 DOMAIN proteins facilitate preprophase band formation and division-plane orientation Nat. Plants 7, 739-747, (2021) DOI: 10.1038/s41477-021-00923-z

Spatiotemporal control of cell division is essential for the growth and development of multicellular organisms. In plant cells, proper cell plate insertion during cytokinesis relies on the premitotic establishment of the division plane at the cell cortex. Two plant-specific cytoskeleton arrays, the preprophase band (PPB) and the phragmoplast, play important roles in division-plane orientation and cell plate formation, respectively1. Microtubule organization and dynamics and their communication with membranes at the cortex and cell plate are coordinated by multiple, mostly distinct microtubule-associated proteins2. How division-plane selection and establishment are linked, however, is still unknown. Here, we report members of the Arabidopsis IQ67 DOMAIN (IQD) family3 as microtubule-targeted proteins that localize to the PPB and phragmoplast and additionally reside at the cell plate and a polarized cortical region including the cortical division zone (CDZ). IQDs physically interact with PHRAGMOPLAST ORIENTING KINESIN (POK) proteins4,5 and PLECKSTRIN HOMOLOGY GTPase ACTIVATING (PHGAP) proteins6, which are core components of the CDZ1. The loss of IQD function impairs PPB formation and affects CDZ recruitment of POKs and PHGAPs, resulting in division-plane positioning defects. We propose that IQDs act as cellular scaffolds that facilitate PPB formation and CDZ set-up during symmetric cell division.
Preprints

Zang, J.; Klemm, S.; Pain, C.; Duckney, P.; Bao, Z.; Stamm, G.; Kriechbaumer, V.; Bürstenbinder, K.; Hussey, P. J.; Wang, P.; A Novel Plant Actin-Microtubule Bridging Complex Regulates Cytoskeletal and ER Structure at Endoplasmic Reticulum-Plasma Membrane Contact Sites (EPCS) SSRN Electronic Journal (2020) DOI: 10.2139/ssrn.3581370

In plants, the cortical ER network is connected to the plasma membrane through the ER-PM contact sites (EPCS), whose structures are maintained by EPCS resident proteins and the cytoskeleton. Strong co-alignment between EPCS and the cytoskeleton is observed in plants, but little is known of how the cytoskeleton is maintained and regulated at the EPCS. Here we have used a yeast-two-hybrid screen and subsequent in vivo interaction studies in plants by FRET-FLIM analysis, to identify two microtubule binding proteins, KLCR1 (Kinesin Light Chain Related protein 1) and IQD2 (IQ67-Domain 2) that interact with the actin binding protein NET3C and form a component of plant EPCS, that mediates the link between the actin and microtubule networks. The NET3C-KLCR1-IQD2 module, acting as an actin-microtubule bridging complex, has a direct influence on ER morphology. Their loss of function mutants, net3a/NET3C RNAi, 0klcr1 or iqd2, exhibit defects in pavement cell morphology which we suggest is linked to the disorganization of both actin filaments and microtubules. In conclusion, our results reveal a novel cytoskeletal associated complex, which is essential for the maintenance and organization of both cytoskeletal structure and ER morphology at the EPCS, and for normal plant cell morphogenesis.
Publikation

Serra, P.; Carbonell, A.; Navarro, B.; Gago-Zachert, S.; Li, S.; Di Serio, F.; Flores, R.; Symptomatic plant viroid infections in phytopathogenic fungi: A request for a critical reassessment Proc. Natl. Acad. Sci. U.S.A. 117, 10126-10128, (2020) DOI: 10.1073/pnas.1922249117

0
Publikation

Mitra, D.; Klemm, S.; Kumari, P.; Quegwer, J.; Möller, B.; Poeschl, Y.; Pflug, P.; Stamm, G.; Abel, S.; Bürstenbinder, K.; Microtubule-associated protein IQ67 DOMAIN5 regulates morphogenesis of leaf pavement cells in Arabidopsis thaliana J. Exp. Bot. 70, 529-543, (2019) DOI: 10.1093/jxb/ery395

Plant microtubules form a highly dynamic intracellular network with important roles for regulating cell division, cell proliferation and cell morphology. Its organization and dynamics are coordinated by various microtubule-associated proteins (MAPs) that integrate environmental and developmental stimuli to fine-tune and adjust cytoskeletal arrays. IQ67 DOMAIN (IQD) proteins recently emerged as a class of plant-specific MAPs with largely unknown functions. Here, using a reverse genetics approach, we characterize Arabidopsis IQD5 in terms of its expression domains, subcellular localization and biological functions. We show that IQD5 is expressed mostly in vegetative tissues, where it localizes to cortical microtubule arrays. Our phenotypic analysis of iqd5 loss-of-function lines reveals functions of IQD5 in pavement cell (PC) shape morphogenesis. Histochemical analysis of cell wall composition further suggests reduced rates of cellulose deposition in anticlinal cell walls, which correlate with reduced anisotropic expansion. Lastly, we demonstrate IQD5-dependent recruitment of calmodulin calcium sensors to cortical microtubule arrays and provide first evidence for important roles of calcium in regulation of PC morphogenesis. Our work thus identifies IQD5 as a novel player in PC shape regulation, and, for the first time, links calcium signaling to developmental processes that regulate anisotropic growth in PCs.
Bücher und Buchkapitel

Möller, B.; Poeschl, Y.; Klemm, S.; Bürstenbinder, K.; Morphological Analysis of Leaf Epidermis Pavement Cells with PaCeQuant (Cvrčková, F. & Žárský, V., eds.). Methods Mol. Biol. 1992, 329-349, (2019) ISBN: 978-1-4939-9469-4 DOI: 10.1007/978-1-4939-9469-4_22

Morphological analysis of cell shapes requires segmentation of cell contours from input images and subsequent extraction of meaningful shape descriptors that provide the basis for qualitative and quantitative assessment of shape characteristics. Here, we describe the publicly available ImageJ plugin PaCeQuant and its associated R package PaCeQuantAna, which provides a pipeline for fully automatic segmentation, feature extraction, statistical analysis, and graphical visualization of cell shape properties. PaCeQuant is specifically well suited for analysis of jigsaw puzzle-like leaf epidermis pavement cells from 2D input images and supports the quantification of global, contour-based, skeleton-based, and pavement cell-specific shape descriptors.
IPB Mainnav Search