zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 2 von 2.

Publikation

Ziegler, J.; Facchini, P. J.; Geißler, R.; Schmidt, J.; Ammer, C.; Kramell, R.; Voigtländer, S.; Gesell, A.; Pienkny, S.; Brandt, W.; Evolution of morphine biosynthesis in opium poppy Phytochemistry 70, 1696-1707, (2009) DOI: 10.1016/j.phytochem.2009.07.006

Benzylisoquinoline alkaloids (BIAs) are a group of nitrogen-containing plant secondary metabolites comprised of an estimated 2500 identified structures. In BIA metabolism, (S)-reticuline is a key branch-point intermediate that can be directed into several alkaloid subtypes with different structural skeleton configurations. The morphinan alkaloids are one subclass of BIAs produced in only a few plant species, most notably and abundantly in the opium poppy (Papaver somniferum). Comparative transcriptome analysis of opium poppy and several other Papaver species that do not accumulate morphinan alkaloids showed that known genes encoding BIA biosynthetic enzymes are expressed at higher levels in P. somniferum. Three unknown cDNAs that are co-ordinately expressed with several BIA biosynthetic genes were identified as enzymes in the pathway. One of these enzymes, salutaridine reductase (SalR), which is specific for the production of morphinan alkaloids, was isolated and heterologously overexpressed in its active form not only from P. somniferum, but also from Papaver species that do not produce morphinan alkaloids. SalR is a member of a class of short chain dehydrogenase/reductases (SDRs) that are active as monomers and possess an extended amino acid sequence compared with classical SDRs. Homology modelling and substrate docking revealed the substrate binding site for SalR. The amino acids residues conferring salutaridine binding were compared to several members of the SDR family from different plant species, which non-specifically reduce (−)-menthone to (+)-neomenthol. Previously, it was shown that some of these proteins are involved in plant defence. The recruitment of specific monomeric SDRs from monomeric SDRs involved in plant defence is discussed.
Publikation

Ziegler, J.; Hamberg, M.; Miersch, O.; Parthier, B.; Purification and Characterization of Allene Oxide Cyclase from Dry Corn Seeds Plant Physiol. 114, 565-573, (1997) DOI: 10.1104/pp.114.2.565

Allene oxide cyclase (AOC; EC 5.3.99.6) catalyzes the cyclization of 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid to 12-oxo- 10,15(Z)-phytodienoic acid, the precursor of jasmonic acid (JA). This soluble enzyme was purified 2000-fold from dry corn (Zea mays L.) kernels to apparent homogeneity. The dimeric protein has a molecular mass of 47 kD. Allene oxide cyclase activity was not affected by divalent ions and was not feedback-regulated by its product, 12-oxo-l0,15(Z)-phytodienoic acid, or by JA. ([plus or minus])-cis- 12,13-Epoxy-9(Z)-octadecenoic acid, a substrate analog, strongly inhibited the enzyme, with 50% inhibition at 20 [mu]M. Modification of the inhibitor, such as methylation of the carboxyl group or a shift in the position of the epoxy group, abolished the inhibitory effect, indicating that both structural elements and their position are essential for binding to AOC. Nonsteroidal anti-inflammatory drugs, which are often used to interfere with JA biosynthesis, did not influence AOC activity. The purified enzyme catalyzed the cyclization of 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid derived from linolenic acid, but not that of 12,13(S)-epoxy-9(Z),11- octadecadienoic acid derived from linoleic acid.
IPB Mainnav Search