zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 2 von 2.

Publikation

Bosch, M.; Wright, L. P.; Gershenzon, J.; Wasternack, C.; Hause, B.; Schaller, A.; Stintzi, A.; Jasmonic Acid and Its Precursor 12-Oxophytodienoic Acid Control Different Aspects of Constitutive and Induced Herbivore Defenses in Tomato Plant Physiol. 166, 396-410, (2014) DOI: 10.1104/pp.114.237388

The jasmonate family of growth regulators includes the isoleucine (Ile) conjugate of jasmonic acid (JA-Ile) and its biosynthetic precursor 12-oxophytodienoic acid (OPDA) as signaling molecules. To assess the relative contribution of JA/JA-Ile and OPDA to insect resistance in tomato (Solanum lycopersicum), we silenced the expression of OPDA reductase3 (OPR3) by RNA interference (RNAi). Consistent with a block in the biosynthetic pathway downstream of OPDA, OPR3-RNAi plants contained wild-type levels of OPDA but failed to accumulate JA or JA-Ile after wounding. JA/JA-Ile deficiency in OPR3-RNAi plants resulted in reduced trichome formation and impaired monoterpene and sesquiterpene production. The loss of these JA/JA-Ile -dependent defense traits rendered them more attractive to the specialist herbivore Manduca sexta with respect to feeding and oviposition. Oviposition preference resulted from reduced levels of repellant monoterpenes and sesquiterpenes. Feeding preference, on the other hand, was caused by increased production of cis-3-hexenal acting as a feeding stimulant for M. sexta larvae in OPR3-RNAi plants. Despite impaired constitutive defenses and increased palatability of OPR3-RNAi leaves, larval development was indistinguishable on OPR3-RNAi and wild-type plants, and was much delayed compared with development on the jasmonic acid-insensitive1 (jai1) mutant. Apparently, signaling through JAI1, the tomato ortholog of the ubiquitin ligase CORONATINE INSENSITIVE1 in Arabidopsis (Arabidopsis thaliana), is required for defense, whereas the conversion of OPDA to JA/JA-Ile is not. Comparing the signaling activities of OPDA and JA/JA-Ile, we found that OPDA can substitute for JA/JA-Ile in the local induction of defense gene expression, but the production of JA/JA-Ile is required for a systemic response.
Publikation

Ziegler, J.; Hamberg, M.; Miersch, O.; Parthier, B.; Purification and Characterization of Allene Oxide Cyclase from Dry Corn Seeds Plant Physiol. 114, 565-573, (1997) DOI: 10.1104/pp.114.2.565

Allene oxide cyclase (AOC; EC 5.3.99.6) catalyzes the cyclization of 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid to 12-oxo- 10,15(Z)-phytodienoic acid, the precursor of jasmonic acid (JA). This soluble enzyme was purified 2000-fold from dry corn (Zea mays L.) kernels to apparent homogeneity. The dimeric protein has a molecular mass of 47 kD. Allene oxide cyclase activity was not affected by divalent ions and was not feedback-regulated by its product, 12-oxo-l0,15(Z)-phytodienoic acid, or by JA. ([plus or minus])-cis- 12,13-Epoxy-9(Z)-octadecenoic acid, a substrate analog, strongly inhibited the enzyme, with 50% inhibition at 20 [mu]M. Modification of the inhibitor, such as methylation of the carboxyl group or a shift in the position of the epoxy group, abolished the inhibitory effect, indicating that both structural elements and their position are essential for binding to AOC. Nonsteroidal anti-inflammatory drugs, which are often used to interfere with JA biosynthesis, did not influence AOC activity. The purified enzyme catalyzed the cyclization of 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid derived from linolenic acid, but not that of 12,13(S)-epoxy-9(Z),11- octadecadienoic acid derived from linoleic acid.
IPB Mainnav Search