zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 10.

Publikation

Aryal, B.; Xia, J.; Hu, Z.; Stumpe, M.; Tsering, T.; Liu, J.; Huynh, J.; Fukao, Y.; Glöckner, N.; Huang, H.-Y.; Sancho-Andrés, G.; Pakula, K.; Ziegler, J.; Gorzolka, K.; Zwiewka, M.; Nodzynski, T.; Harter, K.; Sánchez-Rodríguez, C.; Jasiński, M.; Rosahl, S.; Geisler, M. M.; An LRR receptor kinase controls ABC transporter substrate preferences during plant growth-defense decisions Curr. Biol. 33, 2008-2023, (2023) DOI: 10.1016/j.cub.2023.04.029

The exporter of the auxin precursor indole-3-butyric acid (IBA), ABCG36/PDR8/PEN3, from the model plant Arabidopsis has recently been proposed to also function in the transport of the phytoalexin camalexin. Based on these bonafide substrates, it has been suggested that ABCG36 functions at the interface between growth and defense. Here, we provide evidence that ABCG36 catalyzes the direct, ATP-dependent export of camalexin across the plasma membrane. We identify the leucine-rich repeat receptor kinase, QIAN SHOU KINASE1 (QSK1), as a functional kinase that physically interacts with and phosphorylates ABCG36. Phosphorylation of ABCG36 by QSK1 unilaterally represses IBA export, allowing camalexin export by ABCG36 conferring pathogen resistance. As a consequence, phospho-dead mutants of ABCG36, as well as qsk1 and abcg36 alleles, are hypersensitive to infection with the root pathogen Fusarium oxysporum, caused by elevated fungal progression. Our findings indicate a direct regulatory circuit between a receptor kinase and an ABC transporter that functions to control transporter substrate preference during plant growth and defense balance decisions.
Publikation

Stumpe, M.; Göbel, C.; Faltin, B.; Beike, A. K.; Hause, B.; Himmelsbach, K.; Bode, J.; Kramell, R.; Wasternack, C.; Frank, W.; Reski, R.; Feussner, I.; The moss Physcomitrella patens contains cyclopentenones but no jasmonates: mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology New Phytol. 188, 740-749, (2010) DOI: 10.1111/j.1469-8137.2010.03406.x

Two cDNAs encoding allene oxide cyclases (PpAOC1, PpAOC2), key enzymes in the formation of jasmonic acid (JA) and its precursor (9S,13S)‐12‐oxo‐phytodienoic acid (cis‐(+)‐OPDA), were isolated from the moss Physcomitrella patens.Recombinant PpAOC1 and PpAOC2 show substrate specificity against the allene oxide derived from 13‐hydroperoxy linolenic acid (13‐HPOTE); PpAOC2 also shows substrate specificity against the allene oxide derived from 12‐hydroperoxy arachidonic acid (12‐HPETE).In protonema and gametophores the occurrence of cis‐(+)‐OPDA, but neither JA nor the isoleucine conjugate of JA nor that of cis‐(+)‐OPDA was detected.Targeted knockout mutants for PpAOC1 and for PpAOC2 were generated, while double mutants could not be obtained. The ΔPpAOC1 and ΔPpAOC2 mutants showed reduced fertility, aberrant sporophyte morphology and interrupted sporogenesis.
Publikation

Iglesias, N. G.; Gago-Zachert, S. P.; Robledo, G.; Costa, N.; Plata, M. I.; Vera, O.; Grau, O.; Semorile, L. C.; Population structure of Citrus tristeza virus from field Argentinean isolates Virus Genes 36, 199-207, (2008) DOI: 10.1007/s11262-007-0169-x

We studied the genetic variability of three genomic regions (p23, p25 and p27 genes) from 11 field Citrus tristeza virus isolates from the two main citrus growing areas of Argentina, a country where the most efficient vector of the virus, Toxoptera citricida, is present for decades. The pathogenicity of the isolates was determinated by biological indexing, single-strand conformation polymorphism analysis showed that most isolates contained high intra-isolate variability. Divergent sequence variants were detected in some isolates, suggesting re-infections of the field plants. Phylogenetic analysis of the predominant sequence variants of each isolate revealed similar grouping of isolates for genes p25 and p27. The analysis of p23 showed two groups contained the severe isolates. Our results showed a high intra-isolate sequence variability suggesting that re-infections could contribute to the observed variability and that the host can play an important role in the selection of the sequence variants present in these isolates.
Publikation

Gao, X.; Stumpe, M.; Feussner, I.; Kolomiets, M.; A novel plastidial lipoxygenase of maize (Zea mays) ZmLOX6 encodes for a fatty acid hydroperoxide lyase and is uniquely regulated by phytohormones and pathogen infection Planta 227, 491-503, (2008) DOI: 10.1007/s00425-007-0634-8

Lipoxygenases (LOXs) are members of a large enzyme family that catalyze oxygenation of free polyunsaturated fatty acids into diverse hydroperoxide compounds, collectively called oxylipins. Although LOXs have been well studied in dicot species, reports of the genes encoding these enzymes are scarce for monocots, especially maize. Herein, we reported the cloning, characterization and molecular functional analysis of a novel maize LOX gene, ZmLOX6. The ZmLOX6 nucleotide sequence encodes a deduced translation product of 892 amino acids. Phylogenetic analysis showed that ZmLOX6 is distantly related to previously reported 9- or 13-LOXs from maize and other plant species, including rice and Arabidopsis. Although sequence prediction suggested cytoplasmic localization of this protein, ZmLOX6 protein has been reportedly isolated from mesophyll cell chloroplasts, emphasizing the unique features of this protein. Plastidial localization was confirmed by chloroplast uptake experiments with the in vitro translated protein. Analysis of recombinant protein revealed that ZmLOX6 has lost fatty acid hydroperoxide forming activity but 13-LOX-derived fatty acid hydroperoxides were cleaved into odd-chain ω-oxo fatty acids and as yet not identified C5-compound. In line with its reported abundance in mesophyll cells, ZmLOX6 was predominantly expressed in leaf tissue. Northern blot analysis demonstrated that ZmLOX6 was induced by jasmonic acid, but repressed by abscisic acid, salicylic acid and ethylene and was not responsive to wounding or insects. Further, this gene was strongly induced by the fungal pathogen Cochliobolus carbonum during compatible interactions, suggesting that ZmLOX6 may contribute to susceptibility to this pathogen. The potential involvement of ZmLOX6 in maize interactions with pathogens is discussed.
Publikation

Eschen-Lippold, L.; Rothe, G.; Stumpe, M.; Göbel, C.; Feussner, I.; Rosahl, S.; Reduction of divinyl ether-containing polyunsaturated fatty acids in transgenic potato plants Phytochemistry 68, 797-801, (2007) DOI: 10.1016/j.phytochem.2006.12.010

Oxygenated polyunsaturated fatty acids synthesized via the lipoxygenase pathway play a role in plant responses to pathogen attack. In solanaceous plants, the preferential stimulation of the 9-lipoxygenase pathway in response to pathogen infection leads to the formation of the divinyl ether-containing polyunsaturated fatty acids colneleic and colnelenic acid, as well as hydroxy and trihydroxy polyunsaturated fatty acids. To functionally assess the role of divinyl ethers, transgenic potato plants were generated which express an RNA interference construct directed against the pathogen-inducible 9-divinyl ether synthase. Efficient reduction of 9-divinyl ether synthase transcript accumulation correlated with reduced levels of colneleic and colnelenic acid. However, in response to infection with virulent Phytophthora infestans, the causal agent of late blight disease, no significant differences in pathogen biomass could be detected suggesting that the levels of antimicrobial divinyl ethers are not critical for defense against Phytophthora infestans in a compatible interaction.
Publikation

Stumpe, M.; Carsjens, J.-G.; Stenzel, I.; Göbel, C.; Lang, I.; Pawlowski, K.; Hause, B.; Feussner, I.; Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula Phytochemistry 66, 781-791, (2005) DOI: 10.1016/j.phytochem.2005.01.020

The peroxidation of polyunsaturated fatty acids, common to all eukaryotes, is mostly catalyzed by members of the lipoxygenase enzyme family of non-heme iron containing dioxygenases. Lipoxygenase products can be metabolized further in the oxylipin pathway by several groups of CYP74 enzymes. One prominent oxylipin is jasmonic acid (JA), a product of the 13-allene oxide synthase branch of the pathway and known as signaling substance that plays a role in vegetative and propagative plant development as well as in plant responses to wounding and pathogen attack. In barley roots, JA level increases upon colonization by arbuscular mycorrhizal fungi. Apart from this first result regarding JA, no information is available on the relevance of lipidperoxide metabolism in arbuscular mycorrhizal symbiosis. Thus we analyzed fatty acid and lipidperoxide patterns in roots of Medicago truncatula during mycorrhizal colonization. Levels of fungus-specific fatty acids as well as palmitic acid (16:0) and oleic acid (18:1 n − 9) were increased in mycorrhizal roots. Thus the degree of arbuscular mycorrhizal colonization of roots can be estimated via analysis of fungal specific esterified fatty acids. Otherwise, no significant changes were found in the profiles of esterified and free fatty acids. The 9- and 13-LOX products of linoleic and α-linolenic acid were present in all root samples, but did not show significant differences between mycorrhizal and non-mycorrhizal roots, except JA which showed elevated levels in mycorrhizal roots. In both types of roots levels of 13-LOX products were higher than those of 9-LOX products. In addition, three cDNAs encoding CYP74 enzymes, two 9/13-hydroperoxide lyases and a 13-allene oxide synthase, were isolated and characterized. The transcript accumulation of these three genes, however, was not increased in mycorrhizal roots of M. truncatula.
Bücher und Buchkapitel

Vaira, A. M.; Acotto, G. P.; Gago-Zachert, S.; Garcia, M. L.; Grau, O.; Milne, R. G.; Morikawa, T.; Natsuaki, T.; Torov, V.; Verbeek, M.; Vetten, H. J.; Genus Ophiovirus 673-679, (2005) ISBN: 9780080575483 DOI: 10.1016/B978-0-12-249951-7.50014-6

0
Publikation

Naum-Onganı́a, G.; Gago-Zachert, S.; Peña, E.; Grau, O.; Laura Garcia, M.; Citrus psorosis virus RNA 1 is of negative polarity and potentially encodes in its complementary strand a 24K protein of unknown function and 280K putative RNA dependent RNA polymerase Virus Res. 96, 49-61, (2003) DOI: 10.1016/S0168-1702(03)00172-2

Citrus psorosis virus (CPsV), the type member of genus Ophiovirus, has three genomic RNAs. Complete sequencing of CPsV RNA 1 revealed a size of 8184 nucleotides and Northern blot hybridization with chain specific probes showed that its non-coding strand is preferentially encapsidated. The complementary strand of RNA 1 contains two open reading frames (ORFs) separated by a 109-nt intergenic region, one located near the 5′-end potentially encoding a 24K protein of unknown function, and another of 280K containing the core polymerase motifs characteristic of viral RNA-dependent RNA polymerases (RdRp). Comparison of the core RdRp motifs of negative-stranded RNA viruses, supports grouping CPsV, Ranunculus white mottle virus (RWMV) and Mirafiori lettuce virus (MiLV) within the same genus (Ophiovirus), constituting a monophyletic group separated from all other negative-stranded RNA viruses. Furthermore, RNAs 1 of MiLV, CPsV and RWMV are similar in size and those of MiLV and CPsV also in genomic organization and sequence.
Bücher und Buchkapitel

Stumpe, M.; Stenzel, I.; Weichert, H.; Hause, B.; Feussner, I.; The Lipoxygenase Pathway in Mycorrhizal Roots of Medicago Truncatula 287-290, (2003) DOI: 10.1007/978-94-017-0159-4_67

Mycorrhizas are by far the most frequent occurring beneficial symbiotic interactions between plants and fungi. Species in >80% of extant plant families are capable of establishing an arbuscular mycorrhiza (AM). In relation to the development of the symbiosis the first molecular modifications are those associated with plant defense responses, which seem to be locally suppressed to levels compatible with symbiotic interaction (Gianinazzi-Pearson, 1996). AM symbiosis can, however, reduce root disease caused by several soil-borne pathogens. The mechanisms underlying this protective effect are still not well understood. In plants, products of the enzyme lipoxygenase (LOX) and the corresponding downstream enzymes, collectively named LOX pathway (Fig. 1B), are involved in wound healing, pest resistance, and signaling, or they have antimicrobial and antifungal activity (Feussner and Wasternack, 2002). The central reaction in this pathway is catalyzed by LOXs leading to formation of either 9- or 13-hydroperoxy octadeca(di/trien)oic acids (9/13-HPO(D/T); Brash, 1999). Thus LOXs may be divided into 9- and 13-LOXs (Fig. 1A). Seven different reaction branches within this pathway can use these hydroperoxy polyenoic fatty acids (PUFAs) leading to (i) keto PUFAs by a LOX; (ii) epoxy hydroxy-fatty acids by an epoxy alcohol synthase (EAS); (iii) octadecanoids and jasmonates via allene oxide synthase (AOS); (iv) leaf aldehydes and leaf alcohols via fatty acid hydroperoxide lyase (HPL); (v) hydroxy PUFAs (reductase); (vi) divinyl ether PUFAs via divinyl ether synthase (DES); and (vii) epoxy- or dihydrodiolPUFAs via peroxygenase (PDX; Feussner and Wasternack, 2002). AOS, HPL and DES belong to one subfamily of P450-containing enzymes, the CYP74 family (Feussner and Wasternack, 2002). Here, the involvement of this CYP74 enzyme family in mycorrhizal roots of M. truncatula during early stages of AM symbiosis formation was analyzed.
Publikation

Gago-Zachert, S.; Costa, N.; Semorile, L.; Grau, O.; Sequence variability in p27 gene of Citrus Tristeza Virus (CTV) revealed by SSCP analysis Electron. J. Biotechnol. 2, 41-50, (1999) DOI: 10.2225/vol2-issue1-fulltext-3

Citrus tristeza closterovirus (CTV), is a phloem-limited virus transmitted by aphids in a semipersistent manner. The genome of CTV is composed of a ssRNA with two capsid proteins: CP, covering about 95% of the particle length, and a diverged coat protein (dCP), present only in one end of the particle, forming a rattlesnake structure. dCP is the product of p27 gene for which it is also postulated a function in the transmissibility by aphid vectors. Hybridization analysis showed a p27 gene region, which exhibits different patterns with two probes derived from two biological distinct CTV isolates. In an attempt to screen whether that gene region differs in mild and severe strains, six CTV isolates belonging to different biogroups were compared for variations in their p27 gene by analysis of single-strand conformation polymorphism (SSCP). The p27 gene was reverse transcribed and amplified by PCR and thirty clones of each isolate were obtained. From each clone, two fragments of the gene were amplified by PCR: fragment (a), 459 bp long, and fragment (b), 281 bp long. Sequence variations in both gene fragments were studied by SSCP analysis. A variety of SSCP patterns was obtained from each isolate, being isolates belonging to the groups II-IV and III those with the higher and lower number of them. Moreover, SSCP analysis provided a rapid procedure to screen the genetic heterogeneity of the viral isolates reducing considerably the amount of nucleic acid sequenciation necessary to gain that knowledge.
IPB Mainnav Search