zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 27.

Publikation

Trenner, J.; Poeschl, Y.; Grau, J.; Gogol-Döring, A.; Quint, M.; Delker, C.; Auxin-induced expression divergence between Arabidopsis species may originate within the TIR1/AFB–AUX/IAA–ARF module J. Exp. Bot. 68, 539-552, (2017) DOI: 10.1093/jxb/erw457

Auxin is an essential regulator of plant growth and development, and auxin signaling components are conserved among land plants. Yet, a remarkable degree of natural variation in physiological and transcriptional auxin responses has been described among Arabidopsis thaliana accessions. As intraspecies comparisons offer only limited genetic variation, we here inspect the variation of auxin responses between A. thaliana and A. lyrata. This approach allowed the identification of conserved auxin response genes including novel genes with potential relevance for auxin biology. Furthermore, promoter divergences were analyzed for putative sources of variation. De novo motif discovery identified novel and variants of known elements with potential relevance for auxin responses, emphasizing the complex, and yet elusive, code of element combinations accounting for the diversity in transcriptional auxin responses. Furthermore, network analysis revealed correlations of interspecies differences in the expression of AUX/IAA gene clusters and classic auxin-related genes. We conclude that variation in general transcriptional and physiological auxin responses may originate substantially from functional or transcriptional variations in the TIR1/AFB, AUX/IAA, and ARF signaling network. In that respect, AUX/IAA gene expression divergence potentially reflects differences in the manner in which different species transduce identical auxin signals into gene expression responses.
Publikation

Ibañez, C.; Poeschl, Y.; Peterson, T.; Bellstädt, J.; Denk, K.; Gogol-Döring, A.; Quint, M.; Delker, C.; Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana BMC Plant Biol. 17, 114, (2017) DOI: 10.1186/s12870-017-1068-5

BackgroundGlobal increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best.ResultsHere, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown under long day conditions in four different temperatures ranging from 16 to 28 °C. We used Q10, GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions.ConclusionGenotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.
Preprints

Trenner, J.; Poeschl, Y.; Grau, J.; Gogol-Döring, A.; Quint, M.; Delker, C.; Auxin-induced expression divergence between Arabidopsis species likely originates within the TIR1/AFB-AUX/IAA-ARF module bioRxiv (2016) DOI: 10.1101/038422

Auxin is an essential regulator of plant growth and development and auxin signaling components are conserved among land plants. Yet, a remarkable degree of natural variation in physiological and transcriptional auxin responses has been described among Arabidopsis thaliana accessions. As intra-species comparisons offer only limited genetic variation, we here inspect the variation of auxin responses between A. thaliana and A. lyrata. This approach allowed the identification of conserved auxin response genes including novel genes with potential relevance for auxin biology. Furthermore, promoter divergences were analyzed for putative sources of variation. De novo motif discovery identified novel and variants of known elements with potential relevance for auxin responses, emphasizing the complex, and yet elusive, code of element combinations accounting for the diversity in transcriptional auxin responses. Furthermore, network analysis revealed correlations of inter-species differences in the expression of AUX/IAA gene clusters and classic auxin-related genes. We conclude that variation in general transcriptional and physiological auxin responses may originate substantially from functional or transcriptional variations in the TIR1/AFB, AUX/IAA, and ARF signaling network. In that respect, AUX/IAA gene expression divergence potentially reflects differences in the manner in which different species transduce identical auxin signals into gene expression responses.
Preprints

Ibañez, C.; Poeschl, Y.; Peterson, T.; Bellstädt, J.; Denk, K.; Gogol-Döring, A.; Quint, M.; Delker, C.; Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana bioRxiv (2015) DOI: 10.1101/017285

Background Global increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best.Results Here, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown in four different temperatures ranging from 16 to 28 °C. We used Q10, GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions.Conclusion Genotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.
Publikation

Mur, L. A.; Kenton, P.; Atzorn, R.; Miersch, O.; Wasternack, C.; The Outcomes of Concentration-Specific Interactions between Salicylate and Jasmonate Signaling Include Synergy, Antagonism, and Oxidative Stress Leading to Cell Death Plant Physiol. 140, 249-262, (2006) DOI: 10.1104/pp.105.072348

Salicylic acid (SA) has been proposed to antagonize jasmonic acid (JA) biosynthesis and signaling. We report, however, that in salicylate hydroxylase-expressing tobacco (Nicotiana tabacum) plants, where SA levels were reduced, JA levels were not elevated during a hypersensitive response elicited by Pseudomonas syringae pv phaseolicola. The effects of cotreatment with various concentrations of SA and JA were assessed in tobacco and Arabidopsis (Arabidopsis thaliana). These suggested that there was a transient synergistic enhancement in the expression of genes associated with either JA (PDF1.2 [defensin] and Thi1.2 [thionin]) or SA (PR1 [PR1a-β-glucuronidase in tobacco]) signaling when both signals were applied at low (typically 10–100 μm) concentrations. Antagonism was observed at more prolonged treatment times or at higher concentrations. Similar results were also observed when adding the JA precursor, α-linolenic acid with SA. Synergic effects on gene expression and plant stress were NPR1- and COI1-dependent, SA- and JA-signaling components, respectively. Electrolyte leakage and Evans blue staining indicated that application of higher concentrations of SA + JA induced plant stress or death and elicited the generation of apoplastic reactive oxygen species. This was indicated by enhancement of hydrogen peroxide-responsive AoPR10-β-glucuronidase expression, suppression of plant stress/death using catalase, and direct hydrogen peroxide measurements. Our data suggests that the outcomes of JA-SA interactions could be tailored to pathogen/pest attack by the relative concentration of each hormone.
Publikation

Miersch, O.; Weichert, H.; Stenzel, I.; Hause, B.; Maucher, H.; Feussner, I.; Wasternack, C.; Constitutive overexpression of allene oxide cyclase in tomato (Lycopersicon esculentum cv. Lukullus) elevates levels of some jasmonates and octadecanoids in flower organs but not in leaves Phytochemistry 65, 847-856, (2004) DOI: 10.1016/j.phytochem.2004.01.016

The allene oxide cyclase (AOC), an enzyme in jasmonate biosynthesis, occurs in vascular bundles and ovules of tomato flowers which exhibit a tissue-specific oxylipin signature (Plant J. 24, 113-126, 2000). Constitutive overexpression of the AOC did not led to altered levels of jasmonates in leaves, but these levels increased upon wounding or other stresses suggesting regulation of jasmonate biosynthesis by substrate availability (Plant J. 33, 577-589, 2003). Here, we show dramatic changes in levels of jasmonic acid (JA), of 12-oxo-phytodienoic acid (OPDA), their methyl esters (JAME, OPDAME), and of dinor-OPDA in most flower organs upon constitutive overexpression of AOC. Beside a dominant occurrence of OPDAME and JA in most flower organs, the ratio among the various compounds was altered differentially in the organs of transgenic flowers, e.g. OPDAME increased up to 53-fold in stamen, and JA increased about 51-fold in buds and 7.5-fold in sepals. The increase in jasmonates and octadecanoids was accompanied by decreased levels of free lipid hydro(per)oxy compounds. Except for 16:2, the AOC overexpression led to a significant increase in free but not esterified polyunsaturated fatty acids in all flower organs. The data suggest different regulation of JA biosynthesis in leaves and flowers of tomato.Constitutive overexpression of the AOC increases in all flower organs levels of some jasmonates and octadecanoids, alters the ratios among the compounds, decreases levels of free lipid hydro(per)oxy compounds and increases levels of free but not of esterified polyunsaturated fatty acids.
Publikation

Stenzel, I.; Hause, B.; Miersch, O.; Kurz, T.; Maucher, H.; Weichert, H.; Ziegler, J.; Feussner, I.; Wasternack, C.; Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana Plant Mol. Biol. 51, 895-911, (2003) DOI: 10.1023/A:1023049319723

In biosynthesis of octadecanoids and jasmonate (JA), the naturally occurring enantiomer is established in a step catalysed by the gene cloned recently from tomato as a single-copy gene (Ziegler et al., 2000). Based on sequence homology, four full-length cDNAs were isolated from Arabidopsis thaliana ecotype Columbia coding for proteins with AOC activity. The expression of AOCgenes was transiently and differentially up-regulated upon wounding both locally and systemically and was induced by JA treatment. In contrast, AOC protein appeared at constitutively high basal levels and was slightly increased by the treatments. Immunohistochemical analyses revealed abundant occurrence of AOC protein as well as of the preceding enzymes in octadecanoid biosynthesis, lipoxygenase (LOX) and allene oxide synthase (AOS), in fully developed tissues, but much less so in 7-day old leaf tissues. Metabolic profiling data of free and esterified polyunsaturated fatty acids and lipid peroxidation products including JA and octadecanoids in wild-type leaves and the jasmonate-deficient mutant OPDA reductase 3 (opr3) revealed preferential activity of the AOS branch within the LOX pathway. 13-LOX products occurred predominantly as esterified derivatives, and all 13-hydroperoxy derivatives were below the detection limits. There was a constitutive high level of free 12-oxo-phytodienoic acid (OPDA) in untreated wild-type and opr3 leaves, but an undetectable expression of AOC. Upon wounding opr3 leaves exhibited only low expression of AOC, wounded wild-type leaves, however, accumulated JA and AOC mRNA. These and further data suggest regulation of JA biosynthesis by OPDA compartmentalization and a positive feedback by JA during leaf development.
Bücher und Buchkapitel

Weichert, H.; Maucher, H.; Hornung, E.; Wasternack, C.; Feussner, I.; Shift in Fatty Acid and Oxylipin Pattern of Tomato Leaves Following Overexpression of the Allene Oxide Cyclase 275-278, (2003) DOI: 10.1007/978-94-017-0159-4_64

Polyunsaturated fatty acids (PUFAs) are a source of numerous oxidation products, the oxylipins. In leaves, α-linolenic acid (α-LeA) is the preferential substrate for lipid peroxidation reactions. This reaction may be catalyzed either by a 9-lipoxygenase (9-LOX) or by a 13-LOX and oxygen is inserted regioselectively as well as stereospecifically leading to formation of 13S- or 9S-hydroperoxy octadecatrienoic acid (13-/9-HPOT; Brash, 1999). At least, seven different enzyme families or reaction branches within the LOX pathway can use these HPOTs or other hydroperoxy PUFAs leading to (i) keto-PUFAs (LOX); (ii) epoxy hydroxy-PUFAs (epoxy alcohol synthase, EAS); (iii) octadecanoids and jasmonates (allene oxide synthase, AOS); (iv) leaf aldehydes and leaf alcohols (hydroperoxide lyase, HPL); (v) hydroxy PUFAs (reductase); (vi) divinyl ether PUFAs (divinyl ether synthase, DES); and (vii) epoxy- or dihydrodiol-PUFAs (peroxygenase, PDX; Fig. 1; Feussner and Wasternack, 2002).
Bücher und Buchkapitel

Stumpe, M.; Stenzel, I.; Weichert, H.; Hause, B.; Feussner, I.; The Lipoxygenase Pathway in Mycorrhizal Roots of Medicago Truncatula 287-290, (2003) DOI: 10.1007/978-94-017-0159-4_67

Mycorrhizas are by far the most frequent occurring beneficial symbiotic interactions between plants and fungi. Species in >80% of extant plant families are capable of establishing an arbuscular mycorrhiza (AM). In relation to the development of the symbiosis the first molecular modifications are those associated with plant defense responses, which seem to be locally suppressed to levels compatible with symbiotic interaction (Gianinazzi-Pearson, 1996). AM symbiosis can, however, reduce root disease caused by several soil-borne pathogens. The mechanisms underlying this protective effect are still not well understood. In plants, products of the enzyme lipoxygenase (LOX) and the corresponding downstream enzymes, collectively named LOX pathway (Fig. 1B), are involved in wound healing, pest resistance, and signaling, or they have antimicrobial and antifungal activity (Feussner and Wasternack, 2002). The central reaction in this pathway is catalyzed by LOXs leading to formation of either 9- or 13-hydroperoxy octadeca(di/trien)oic acids (9/13-HPO(D/T); Brash, 1999). Thus LOXs may be divided into 9- and 13-LOXs (Fig. 1A). Seven different reaction branches within this pathway can use these hydroperoxy polyenoic fatty acids (PUFAs) leading to (i) keto PUFAs by a LOX; (ii) epoxy hydroxy-fatty acids by an epoxy alcohol synthase (EAS); (iii) octadecanoids and jasmonates via allene oxide synthase (AOS); (iv) leaf aldehydes and leaf alcohols via fatty acid hydroperoxide lyase (HPL); (v) hydroxy PUFAs (reductase); (vi) divinyl ether PUFAs via divinyl ether synthase (DES); and (vii) epoxy- or dihydrodiolPUFAs via peroxygenase (PDX; Feussner and Wasternack, 2002). AOS, HPL and DES belong to one subfamily of P450-containing enzymes, the CYP74 family (Feussner and Wasternack, 2002). Here, the involvement of this CYP74 enzyme family in mycorrhizal roots of M. truncatula during early stages of AM symbiosis formation was analyzed.
Publikation

Weichert, H.; Kolbe, A.; Kraus, A.; Wasternack, C.; Feussner, I.; Metabolic profiling of oxylipins in germinating cucumber seedlings - lipoxygenase-dependent degradation of triacylglycerols and biosynthesis of volatile aldehydes Planta 215, 612-619, (2002) DOI: 10.1007/s00425-002-0779-4

A particular isoform of lipoxygenase (LOX) localized on lipid bodies was shown by earlier investigations to play a role in initiating the mobilization of triacylglycerols during seed germination. Here, further physiological functions of LOXs within whole cotyledons of cucumber (Cucumis sativus L.) were analyzed by measuring the endogenous amounts of LOX-derived products. The lipid-body LOX-derived esterified (13S)-hydroperoxy linoleic acid was the dominant metabolite of the LOX pathway in this tissue. It accumulated to about 14 µmol/g fresh weight, which represented about 6% of the total amount of linoleic acid in cotyledons. This LOX product was not only reduced to its hydroxy derivative, leading to degradation by β-oxidation, but alternatively it was metabolized by fatty acid hydroperoxide lyase leading to formation of hexanal as well. Furthermore, the activities of LOX forms metabolizing linolenic acid were detected by measuring the accumulation of volatile aldehydes and the allene oxide synthase-derived metabolite jasmonic acid. The first evidence is presented for an involvement of a lipid-body LOX form in the production of volatile aldehydes.
IPB Mainnav Search