zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 16.

Publikation

Ibañez, C.; Poeschl, Y.; Peterson, T.; Bellstädt, J.; Denk, K.; Gogol-Döring, A.; Quint, M.; Delker, C. Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana BMC Plant Biol 17, 114, (2017) DOI: 10.1186/s12870-017-1068-5

BackgroundGlobal increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best.ResultsHere, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown under long day conditions in four different temperatures ranging from 16 to 28 °C. We used Q10, GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions.ConclusionGenotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.
Publikation

Trenner, J.; Poeschl, Y.; Grau, J.; Gogol-Döring, A.; Quint, M.; Delker, C. Auxin-induced expression divergence between Arabidopsis species may originate within the TIR1/AFB–AUX/IAA–ARF module J Exp Bot 68, 539-552, (2017) DOI: 10.1093/jxb/erw457

Auxin is an essential regulator of plant growth and development, and auxin signaling components are conserved among land plants. Yet, a remarkable degree of natural variation in physiological and transcriptional auxin responses has been described among Arabidopsis thaliana accessions. As intraspecies comparisons offer only limited genetic variation, we here inspect the variation of auxin responses between A. thaliana and A. lyrata. This approach allowed the identification of conserved auxin response genes including novel genes with potential relevance for auxin biology. Furthermore, promoter divergences were analyzed for putative sources of variation. De novo motif discovery identified novel and variants of known elements with potential relevance for auxin responses, emphasizing the complex, and yet elusive, code of element combinations accounting for the diversity in transcriptional auxin responses. Furthermore, network analysis revealed correlations of interspecies differences in the expression of AUX/IAA gene clusters and classic auxin-related genes. We conclude that variation in general transcriptional and physiological auxin responses may originate substantially from functional or transcriptional variations in the TIR1/AFB, AUX/IAA, and ARF signaling network. In that respect, AUX/IAA gene expression divergence potentially reflects differences in the manner in which different species transduce identical auxin signals into gene expression responses.
Preprints

Ibañez, C.; Poeschl, Y.; Peterson, T.; Bellstädt, J.; Denk, K.; Gogol-Döring, A.; Quint, M.; Delker, C. Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana bioRxiv (2017) DOI: 10.1101/017285

Background: Global increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best. Results: Here, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown in four different temperatures ranging from 16 to 28 °C. We used Q 10 , GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions. Conclusion: Genotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.
Preprints

Trenner, J.; Poeschl, Y.; Grau, J.; Gogol-Döring, A.; Quint, M.; Delker, C. Auxin-induced expression divergence between Arabidopsis species likely originates within the TIR1/AFB-AUX/IAA-ARF module bioRxiv (2016) DOI: 10.1101/038422

Auxin is an essential regulator of plant growth and development and auxin signaling components are conserved among land plants. Yet, a remarkable degree of natural variation in physiological and transcriptional auxin responses has been described among Arabidopsis thaliana accessions. As intra-species comparisons offer only limited genetic variation, we here inspect the variation of auxin responses between A. thaliana and A. lyrata. This approach allowed the identification of conserved auxin response genes including novel genes with potential relevance for auxin biology. Furthermore, promoter divergences were analyzed for putative sources of variation. De novo motif discovery identified novel and variants of known elements with potential relevance for auxin responses, emphasizing the complex, and yet elusive, code of element combinations accounting for the diversity in transcriptional auxin responses. Furthermore, network analysis revealed correlations of inter-species differences in the expression of AUX/IAA gene clusters and classic auxin-related genes. We conclude that variation in general transcriptional and physiological auxin responses may originate substantially from functional or transcriptional variations in the TIR1/AFB, AUX/IAA, and ARF signaling network. In that respect, AUX/IAA gene expression divergence potentially reflects differences in the manner in which different species transduce identical auxin signals into gene expression responses.
Publikation

Mur, L.A.J.; Kenton, P.; Atzorn, R.; Miersch, O.; Wasternack, C. The outcomes of concentration specific interactions between salicylate and jasmonate signaling include synergy, antagonism and the activation of cell death Plant Physiol. 140, 249-262, (2006) DOI: 10.1104/pp.105.072348

0
Publikation

Kramell, R.; Miersch, O.; Atzorn, R.; Parthier, B.; Wasternack, C. Octadecanoid-derived alteration of gene expression and the 'oxylipin signature' in stressed barley leaves - implications for different signalling pathways Plant Physiol. 123, 177-186, (2000)

Stress-induced gene expression in barley (Hordeum vulgare cv. Salome) leaves has been correlated with temporally changing levels of octadecanoids and jasmonates, quantified by means of gas chromatography/mass spectrometry-single ion monitoring. Application of sorbitol-induced stress led to a low and transient rise of jasmonic acid (JA), its precursor 12-oxophytodienoic acid (OPDA) and the methyl esters JAME and OPDAME, respectively, followed by a large increase in their levels. JA and JAME peaked between 12 and 16 h, about 4 hours before OPDA and OPDAME. However, OPDA accumulated up to a 2.5-fold higher level than the other compounds. Dihomo-jasmonic acid and 9,13-didehydro-12- oxophytoenoic acid were identified as minor components. Kinetic analyses revealed that a transient threshold of jasmonates or octadecanoids is necessary and sufficient to initiate JA responsive gene expression. Although OPDA and OPDAME applied exogenously were metabolized to JA in considerable amounts, both of them can induce gene expression per se as evidenced by those genes which do not respond to endogenously formed JA. Also, coronatine induces JA-responsive genes independently from endogenous JA. As evidenced by application of deuterated JA, endogenous synthesis of JA is not induced by JA treatment. The data are discussed in terms of distinct signalling pathways.
Publikation

Kenton, P.; Mur, L.A.J.; Atzorn, R.; Wasternack, C.; Draper, J. (—)-Jasmonic Acid Accumulation in Tobacco Hypersensitive Response Lesions Mol. Plant Microbiol. Interactions 12, 74-78, (1999) DOI: 10.1094/MPMI.1999.12.1.74

Tobacco infected with Pseudomonas syringae pv. phaseolicola undergoes a hypersensitive response (HR). Jasmonic acid (JA) accumulated within the developing lesion 3 to 9 h after infection and this accumulation preceded protein loss, cell death, and malondialdehyde accumulation. Accumulating JA consisted largely of the (—)-JA stereoisomer and was essentially restricted to the HR lesion
Publikation

Herde, O.; Atzorn, R.; Fisahn, J.; Wasternack, C.; Willmitzer, L.; Peña-Cortés, H. Localized wounding by heat initiates the accumulation of proteinase inhibitor II in abscisic acid-deficient plants by triggering jasmonic acid biosynthesis Plant Physiol. 112, 853-860, (1996)

0
Publikation

Peña-Cortés, H.; Prat, S.; Atzorn, R.; Wasternack, C.; Willmitzer, L. Pin2 gene expression in potato and tomato detached leaves from ABA-deficient potato and tomato plants upon systemin treatment Planta 198, 447-451, (1996)

0
Publikation

Wasternack, C.; Atzorn, R.; Pena-Cortes, H.; Parthier, B. Alteration of gene expression by jasmonate and ABA in tobacco and tomato J. Plant Physiol. 147, 503-510, (1996)

0
IPB Mainnav Search