zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 2 von 2.

Publikation

Levy, M.; Wang, Q.; Kaspi, R.; Parrella, M. P.; Abel, S.; Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense Plant J. 43, 79-96, (2005) DOI: 10.1111/j.1365-313X.2005.02435.x

Glucosinolates are a class of secondary metabolites with important roles in plant defense and human nutrition. To uncover regulatory mechanisms of glucosinolate production, we screened Arabidopsis thaliana T‐DNA activation‐tagged lines and identified a high‐glucosinolate mutant caused by overexpression of IQD1 (At3g09710). A series of gain‐ and loss‐of‐function IQD1 alleles in different accessions correlates with increased and decreased glucosinolate levels, respectively. IQD1 encodes a novel protein that contains putative nuclear localization signals and several motifs known to mediate calmodulin binding, which are arranged in a plant‐specific segment of 67 amino acids, called the IQ67 domain. We demonstrate that an IQD1‐GFP fusion protein is targeted to the cell nucleus and that recombinant IQD1 binds to calmodulin in a Ca2+‐dependent fashion. Analysis of steady‐state messenger RNA levels of glucosinolate pathway genes indicates that IQD1 affects expression of multiple genes with roles in glucosinolate metabolism. Histochemical analysis of tissue‐specific IQD1 ::GUS expression reveals IQD1 promoter activity mainly in vascular tissues of all organs, consistent with the expression patterns of several glucosinolate‐related genes. Interestingly, overexpression of IQD1 reduces insect herbivory, which we demonstrated in dual‐choice assays with the generalist phloem‐feeding green peach aphid (Myzus persicae ), and in weight‐gain assays with the cabbage looper (Trichoplusia ni ), a generalist‐chewing lepidopteran. As IQD1 is induced by mechanical stimuli, we propose IQD1 to be novel nuclear factor that integrates intracellular Ca2+ signals to fine‐tune glucosinolate accumulation in response to biotic challenge.
Publikation

Gago, S.; De la Peña, M.; Flores, R.; A kissing-loop interaction in a hammerhead viroid RNA critical for its in vitro folding and in vivo viability RNA 11, 1073-1083, (2005) DOI: 10.1261/rna.2230605

Chrysanthemum chlorotic mottle viroid (CChMVd) RNA (398–401 nucleotides) can form hammerhead ribozymes that play a functional role in its replication through a rolling-circle mechanism. In contrast to most other viroids, which adopt rod-like or quasi-rod-like secondary structures of minimal free energy, the computer-predicted conformations of CChMVd and Peach latent mosaic viroid (PLMVd) RNAs are branched. Moreover, the covariations found in a number of natural CChMVd variants support that the same or a closely related conformation exists in vivo. Here we report that the CChMVd natural variability also supports that the branched conformation is additionally stabilized by a kissing-loop interaction resembling another one proposed in PLMVd from in vitro assays. Moreover, site-directed mutagenesis combined with bioassays and progeny analysis showed that: (1) single CChMVd mutants affecting the kissing loops had low or no infectivity at all, whereas infectivity was recovered in double mutants restoring the interaction; (2) mutations affecting the structure of the regions adjacent to the kissing loops reverted to wild type or led to rearranged stems, also supporting their interaction; and (3) the interchange between 4 nucleotides of each of the two kissing loops generated a viable CChMVd variant with eight mutations. PAGE analysis under denaturing and nondenaturing conditions revealed that the kissing-loop interaction determines proper in vitro folding of CChMVd RNA. Preservation of a similar kissing-loop interaction in two hammerhead viroids with an overall low sequence similarity suggests that it facilitates in vivo the adoption and stabilization of a compact folding critical for viroid viability.
IPB Mainnav Search