zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 21.

Publikation

Kumari, P.; Dahiya, P.; Livanos, P.; Zergiebel, L.; Kölling, M.; Poeschl, Y.; Stamm, G.; Hermann, A.; Abel, S.; Müller, S.; Bürstenbinder, K.; IQ67 DOMAIN proteins facilitate preprophase band formation and division-plane orientation Nat. Plants 7, 739-747, (2021) DOI: 10.1038/s41477-021-00923-z

Spatiotemporal control of cell division is essential for the growth and development of multicellular organisms. In plant cells, proper cell plate insertion during cytokinesis relies on the premitotic establishment of the division plane at the cell cortex. Two plant-specific cytoskeleton arrays, the preprophase band (PPB) and the phragmoplast, play important roles in division-plane orientation and cell plate formation, respectively1. Microtubule organization and dynamics and their communication with membranes at the cortex and cell plate are coordinated by multiple, mostly distinct microtubule-associated proteins2. How division-plane selection and establishment are linked, however, is still unknown. Here, we report members of the Arabidopsis IQ67 DOMAIN (IQD) family3 as microtubule-targeted proteins that localize to the PPB and phragmoplast and additionally reside at the cell plate and a polarized cortical region including the cortical division zone (CDZ). IQDs physically interact with PHRAGMOPLAST ORIENTING KINESIN (POK) proteins4,5 and PLECKSTRIN HOMOLOGY GTPase ACTIVATING (PHGAP) proteins6, which are core components of the CDZ1. The loss of IQD function impairs PPB formation and affects CDZ recruitment of POKs and PHGAPs, resulting in division-plane positioning defects. We propose that IQDs act as cellular scaffolds that facilitate PPB formation and CDZ set-up during symmetric cell division.
Publikation

Bochnia, M.; Ziegler, J.; Glatter, M.; Zeyner, A.; Hypoglycin A in cow’s milk—A pilot study Toxins 13, 381, (2021) DOI: 10.3390/toxins13060381

Hypoglycin A (HGA) originating from soapberry fruits (litchi, and ackee) seeds or seedlings from the sycamore maple (SM) tree (related to Sapindaceae) may cause Jamaican vomiting sickness in humans and atypical myopathy in horses and ruminants. A possible transfer into dairy cow’s milk cannot be ruled out since the literature has revealed HGA in the milk of mares and in the offal of captured deer following HGA intoxication. From a study, carried out for another purpose, bulk raw milk samples from four randomly selected dairy farms were available. The cows were pastured in the daytime. A sycamore maple tree was found on the pasture of farm No. 1 only. Bulk milk from the individual tank or milk filling station was sampled in parallels and analyzed for HGA by LC-ESI-MS/MS. Measurable concentrations of HGA occurred only in milk from farm No. 1 and amounted to 120 and 489 nmol/L. Despite low and very variable HGA concentrations, the results indicate that the ingested toxin, once eaten, is transferred into the milk. However, it is unknown how much HGA the individual cow ingested during grazing and what amount was transferred into the bulk milk samples. As a prerequisite for a possible future safety assessment, carry-over studies are needed. Furthermore, the toxins’ stability during milk processing should also be investigated as well.
Publikation

Ziegler, J.; Bochnia, M.; Zeyner, A.; Aminosäurennachweis in geringsten ProbenmengenBestimmung von Hypoglycin A Wiley Analytical Science (2021)

0
Bücher und Buchkapitel

Poeschl, Y.; Möller, B.; Müller, L.; Bürstenbinder, K.; User-friendly assessment of pavement cell shape features with PaCeQuant: Novel functions and tools (Charles T. Anderson, Elizabeth S. Haswell, Ram Dixit). Methods Cell Biol. 160, 349-363, (2020) DOI: 10.1016/bs.mcb.2020.04.010

Leaf epidermis pavement cells develop complex jigsaw puzzle-like shapes in many plant species, including the model plant Arabidopsis thaliana. Due to their complex morphology, pavement cells have become a popular model system to study shape formation and coordination of growth in the context of mechanically coupled cells at the tissue level. To facilitate robust assessment and analysis of pavement cell shape characteristics in a high-throughput fashion, we have developed PaCeQuant and a collection of supplemental tools. The ImageJ-based MiToBo plugin PaCeQuant supports fully automatic segmentation of cell contours from microscopy images and the extraction of 28 shape features for each detected cell. These features now also include the Largest Empty Circle criterion as a proxy for mechanical stress. In addition, PaCeQuant provides a set of eight features for individual lobes, including the categorization as type I and type II lobes at two- and three-cell junctions, respectively. The segmentation and feature extraction results of PaCeQuant depend on the quality of input images. To allow for corrections in case of local segmentation errors, the LabelImageEditor is provided for user-friendly manual postprocessing of segmentation results. For statistical analysis and visualization, PaCeQuant is supplemented with the R package PaCeQuantAna, which provides statistical analysis functions and supports the generation of publication-ready plots in ready-to-use R workflows. In addition, we recently released the FeatureColorMapper tool which overlays feature values over cell regions for user-friendly visual exploration of selected features in a set of analyzed cells.
Publikation

Bochnia, M.; Sander, J.; Ziegler, J.; Terhardt, M.; Sander, S.; Janzen, N.; Cavalleri, J.-M. V.; Zuraw, A.; Wensch-Dorendorf, M.; Zeyner, A.; Detection of MCPG metabolites in horses with atypical myopathy PLOS ONE 14, e0211698, (2019) DOI: 10.1371/journal.pone.0211698

Atypical myopathy (AM) in horses is caused by ingestion of seeds of the Acer species (Sapindaceae family). Methylenecyclopropylacetyl-CoA (MCPA-CoA), derived from hypoglycin A (HGA), is currently the only active toxin in Acer pseudoplatanus or Acer negundo seeds related to AM outbreaks. However, seeds or arils of various Sapindaceae (e.g., ackee, lychee, mamoncillo, longan fruit) also contain methylenecyclopropylglycine (MCPG), which is a structural analogue of HGA that can cause hypoglycaemic encephalopathy in humans. The active poison formed from MCPG is methylenecyclopropylformyl-CoA (MCPF-CoA). MCPF-CoA and MCPA-CoA strongly inhibit enzymes that participate in β-oxidation and energy production from fat. The aim of our study was to investigate if MCPG is involved in Acer seed poisoning in horses. MCPG, as well as glycine and carnitine conjugates (MCPF-glycine, MCPF-carnitine), were quantified using high-performance liquid chromatography-tandem mass spectrometry of serum and urine from horses that had ingested Acer pseudoplatanus seeds and developed typical AM symptoms. The results were compared to those of healthy control horses. For comparison, HGA and its glycine and carnitine derivatives were also measured. Additionally, to assess the degree of enzyme inhibition of β-oxidation, several acyl glycines and acyl carnitines were included in the analysis. In addition to HGA and the specific toxic metabolites (MCPA-carnitine and MCPA-glycine), MCPG, MCPF-glycine and MCPF-carnitine were detected in the serum and urine of affected horses. Strong inhibition of β-oxidation was demonstrated by elevated concentrations of all acyl glycines and carnitines, but the highest correlations were observed between MCPF-carnitine and isobutyryl-carnitine (r = 0.93) as well as between MCPA- (and MCPF-) glycine and valeryl-glycine with r = 0.96 (and r = 0.87). As shown here, for biochemical analysis of atypical myopathy of horses, it is necessary to take MCPG and the corresponding metabolites into consideration.
Publikation

Bellstaedt, J.; Trenner, J.; Lippmann, R.; Poeschl, Y.; Zhang, X.; Friml, J.; Quint, M.; Delker, C.; A Mobile Auxin Signal Connects Temperature Sensing in Cotyledons with Growth Responses in Hypocotyls Plant Physiol. 180, 757-766, (2019) DOI: 10.1104/pp.18.01377

Plants have a remarkable capacity to adjust their growth and development to elevated ambient temperatures. Increased elongation growth of roots, hypocotyls, and petioles in warm temperatures are hallmarks of seedling thermomorphogenesis. In the last decade, significant progress has been made to identify the molecular signaling components regulating these growth responses. Increased ambient temperature utilizes diverse components of the light sensing and signal transduction network to trigger growth adjustments. However, it remains unknown whether temperature sensing and responses are universal processes that occur uniformly in all plant organs. Alternatively, temperature sensing may be confined to specific tissues or organs, which would require a systemic signal that mediates responses in distal parts of the plant. Here, we show that Arabidopsis (Arabidopsis thaliana) seedlings show organ-specific transcriptome responses to elevated temperatures and that thermomorphogenesis involves both autonomous and organ-interdependent temperature sensing and signaling. Seedling roots can sense and respond to temperature in a shoot-independent manner, whereas shoot temperature responses require both local and systemic processes. The induction of cell elongation in hypocotyls requires temperature sensing in cotyledons, followed by the generation of a mobile auxin signal. Subsequently, auxin travels to the hypocotyl, where it triggers local brassinosteroid-induced cell elongation in seedling stems, which depends upon a distinct, permissive temperature sensor in the hypocotyl.
Publikation

Mitra, D.; Klemm, S.; Kumari, P.; Quegwer, J.; Möller, B.; Poeschl, Y.; Pflug, P.; Stamm, G.; Abel, S.; Bürstenbinder, K.; Microtubule-associated protein IQ67 DOMAIN5 regulates morphogenesis of leaf pavement cells in Arabidopsis thaliana J. Exp. Bot. 70, 529-543, (2019) DOI: 10.1093/jxb/ery395

Plant microtubules form a highly dynamic intracellular network with important roles for regulating cell division, cell proliferation and cell morphology. Its organization and dynamics are coordinated by various microtubule-associated proteins (MAPs) that integrate environmental and developmental stimuli to fine-tune and adjust cytoskeletal arrays. IQ67 DOMAIN (IQD) proteins recently emerged as a class of plant-specific MAPs with largely unknown functions. Here, using a reverse genetics approach, we characterize Arabidopsis IQD5 in terms of its expression domains, subcellular localization and biological functions. We show that IQD5 is expressed mostly in vegetative tissues, where it localizes to cortical microtubule arrays. Our phenotypic analysis of iqd5 loss-of-function lines reveals functions of IQD5 in pavement cell (PC) shape morphogenesis. Histochemical analysis of cell wall composition further suggests reduced rates of cellulose deposition in anticlinal cell walls, which correlate with reduced anisotropic expansion. Lastly, we demonstrate IQD5-dependent recruitment of calmodulin calcium sensors to cortical microtubule arrays and provide first evidence for important roles of calcium in regulation of PC morphogenesis. Our work thus identifies IQD5 as a novel player in PC shape regulation, and, for the first time, links calcium signaling to developmental processes that regulate anisotropic growth in PCs.
Bücher und Buchkapitel

Möller, B.; Poeschl, Y.; Klemm, S.; Bürstenbinder, K.; Morphological Analysis of Leaf Epidermis Pavement Cells with PaCeQuant (Cvrčková, F. & Žárský, V., eds.). Methods Mol. Biol. 1992, 329-349, (2019) ISBN: 978-1-4939-9469-4 DOI: 10.1007/978-1-4939-9469-4_22

Morphological analysis of cell shapes requires segmentation of cell contours from input images and subsequent extraction of meaningful shape descriptors that provide the basis for qualitative and quantitative assessment of shape characteristics. Here, we describe the publicly available ImageJ plugin PaCeQuant and its associated R package PaCeQuantAna, which provides a pipeline for fully automatic segmentation, feature extraction, statistical analysis, and graphical visualization of cell shape properties. PaCeQuant is specifically well suited for analysis of jigsaw puzzle-like leaf epidermis pavement cells from 2D input images and supports the quantification of global, contour-based, skeleton-based, and pavement cell-specific shape descriptors.
Preprints

Mitra, D.; Kumari, P.; Quegwer, J.; Klemm, S.; Möller, B.; Poeschl, Y.; Pflug, P.; Stamm, G.; Abel, S.; Bürstenbinder, K.; Microtubule-associated protein IQ67 DOMAIN5 regulates interdigitation of leaf pavement cells in Arabidopsis thaliana bioRxiv (2018) DOI: 10.1101/268466

Plant microtubules form a highly dynamic intracellular network with important roles for regulating cell division, cell proliferation and cell morphology. Its organization and dynamics are coordinated by various microtubule-associated proteins (MAPs) that integrate environmental and developmental stimuli to fine-tune and adjust cytoskeletal arrays. IQ67 DOMAIN (IQD) proteins recently emerged as a class of plant-specific MAPs with largely unknown functions. Here, using a reverse genetics approach, we characterize Arabidopsis IQD5 in terms of its expression domains, subcellular localization and biological functions. We show that IQD5 is expressed mostly in vegetative tissues, where it localizes to cortical microtubule arrays. Our phenotypic analysis of iqd5 loss-of-function lines reveals functions of IQD5 in pavement cell (PC) shape morphogenesis, as indicated by reduced interdigitation of neighboring cells in the leaf epidermis of iqd5 mutants. Histochemical analysis of cell wall composition further suggests reduced rates of cellulose deposition in anticlinal cell walls, which correlate with reduced asymmetric expansion. Lastly, we provide evidence for IQD5-dependent recruitment of calmodulin calcium sensors to cortical microtubule arrays. Our work thus identifies IQD5 as a novel player in PC shape regulation, and, for the first time, links calcium signaling to developmental processes that regulate multi-polar growth in PCs.
Publikation

García, M. L.; Bó, E. D.; da Graça, J. V.; Gago-Zachert, S.; Hammond, J.; Moreno, P.; Natsuaki, T.; Pallás, V.; Navarro, J. A.; Reyes, C. A.; Luna, G. R.; Sasaya, T.; Tzanetakis, I. E.; Vaira, A. M.; Verbeek, M.; ICTV Report Consortium, .; Corrigendum: ICTV Virus Taxonomy Profile: Ophioviridae J. Gen. Virol. 99, 949-949, (2018) DOI: 10.1099/jgv.0.001093

0
IPB Mainnav Search