zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 4 von 4.

Publikation

Dingley, K. H.; Ubick, E. A.; Chiarappa-Zucca, M. L.; Nowell, S.; Abel, S.; Ebeler, S. E.; Mitchell, A. E.; Burns, S. A.; Steinberg, F. M.; Clifford, A. J.; Effect of Dietary Constituents With Chemopreventive Potential on Adduct Formation of a Low Dose of the Heterocyclic Amines PhIP and IQ and Phase II Hepatic Enzymes Nutr. Cancer 46, 212-221, (2003) DOI: 10.1207/S15327914NC4602_15

We conducted a study to evaluate dietary chemopreventive strategies to reduce genotoxic effects of the carcinogens 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). PhIP and IQ are heterocyclic amines (HCAs) that are found in cooked meat and may be risk factors for cancer. Typical chemoprevention studies have used carcinogen doses many thousand-fold higher than usual human daily intake. Therefore, we administered a low dose of [14C] PhIPand [3H] IQand utilized accelerator mass spectrometry to quantify PhIP adducts in the liver, colon, prostate, and blood plasma and IQadducts in the liver and blood plasma with high sensitivity. Diets supplemented with phenethylisothiocyanate (PEITC), genistein, chlorophyllin, or lycopene were evaluated for their ability to decrease adduct formation of [14C] PhIPand [3H] IQin rats. We also examined the effect of treatments on the activity of the phase II detoxification enzymes glutathione S-transferase (GST), UDP-glucuronyltransferase (UGT), phenol sulfotransferase (SULT) and quinone reductase (QR). PEITC and chlorophyllin significantly decreased PhIP-DNA adduct levels in all tissues examined, which was reflected by similar changes in PhIP binding to albumin in the blood. In contrast, genistein and lycopene tended to increase PhIP adduct levels. The treatments did not significantly alter the level of IQ-DNA or -protein adducts in the liver.With the exception of lycopene, the treatments had some effect on the activity of one or more hepatic phase II detoxification enzymes. We conclude that PEITC and chlorophyllin are protective of PhIP-induced genotoxicity after a low exposure dose of carcinogen, possibly through modification of HCA metabolism.
Publikation

Abdala, G.; Miersch, O.; Kramell, R.; Vigliocco, A.; Agostini, E.; Forchetti, G.; Alemano, S.; Jasmonate and octadecanoid occurrence in tomato hairy roots. Endogenous level changes in response to NaCl Plant Growth Regul. 40, 21-27, (2003) DOI: 10.1023/A:1023016412454

Jasmonic acid biosynthesis occurs in leaves and there is also evidence of a similar pathway in roots. The expression of lipoxygenase, allene oxide cyclase and low amounts of transcripts of allene oxide synthase in tomato roots indicates that some steps of the jasmonate synthesis may occur in these organs. Thus, the aim of the present work was to study the jasmonate and octadecanoid occurrence in tomato roots using isolated cultures of hairy roots. These were obtained by the transformation of cv. Pera roots with Agrobacterium rhyzogenes. Also we investigated the effect of NaCl stress on the endogenous levels of these compounds. Jasmonic acid, 12-oxophytodienoic acid and their methylated derivatives, as well as a jasmonate-isoleucine conjugate, were present in control hairy roots of 30 d of culture. The 12-oxophytodienoic acid and its methylated derivative showed higher levels than jasmonic acid and its methylated form, although the content of the conjugate was the same as that of jasmonic acid. After salinization of hairy roots for 14, 20 and 30 d, free jasmonates and octadecanoids were measured. Fourteen days after salt treatment, increased levels of these compounds were found, jasmonic acid and 12-oxophytodienoic acid showed the most remarkable rise. 11-OH-jasmonic acid was found at 14 d of culture in control and salt-treated hairy roots; whereas the 12-OH- form of jasmonic acid was only detected in the salt-treated hairy roots. Agrobacterium rhizogenes cultures did not produce jasmonates and/or octadecanoids.
Publikation

Vigliocco, A.; Bonamico, B.; Alemano, S.; Miersch, O.; Abdala, G.; Stimulation of jasmonic acid production in Zea Mays L. infected by the maize rough dwarf virus - Río Cuarto. Reversion of symptoms by salicylic acid Biocell 26, 369-374, (2002)

In the present paper we study the possible biological relevance of endogenous jasmonic acid (JA) and exogenous salicylic acid (SA) in a plant-microbial system maize-virus. The virus disease "Mal de Río Cuarto" is caused by the maize rough dwarf virus - Río Cuarto. The characteristic symptoms are the appearance of galls or "enations" in leaves, shortening of the stem internodes, poor radical system and general stunting. Changes in JA and protein pattern in maize control and infected plants of a virus-tolerant cultivar were investigated. Healthy and infected-leaf discs were collected for JA measurement at different post-infection times (20, 40, 60 and 68 days). JA was also measured in roots on day 60 after infection. For SDS-PAGE protein analysis, leaf discs were also harvested on day 60 after infection. Infected leaves showed higher levels of JA than healthy leaves, and the rise in endogenous JA coincided with the enation formation. The soluble protein amount did not show differences between infected and healthy leaves; moreover, no difference in the expression of soluble protein was revealed by SDS-PAGE. Our results show that the octadecanoid pathway was stimulated in leaves and roots of the tolerant maize cultivar when infected by this virus. This finding, together with fewer plants with the disease symptoms, suggest that higher foliar and roots JA content may be related to disease tolerance. SA exogenous treatment caused the reversion of the dwarfism symptom.
Publikation

Nibbe, M.; Hilpert, B.; Wasternack, C.; Miersch, O.; Apel, K.; Cell death and salicylate- and jasmonate-dependent stress responses in Arabidopsis are controlled by single cet genes Planta 216, 120-128, (2002) DOI: 10.1007/s00425-002-0907-1

The jasmonic acid (JA)-dependent regulation of the Thi2.1 gene had previously been exploited for setting up a genetic screen for the isolation of signal transduction mutants of Arabidopsis thaliana (L.) Heynh. that constitutively express the thionin gene. Several cet mutants had been isolated which showed a constitutive expression of the thionin gene. These cet mutants, except for one, also showed spontaneous leaf cell necrosis and were up-regulated in the expression of the PR1 gene, reactions often associated with the systemic acquired resistance (SAR) pathway. Four of these cet mutants, cet1, cet2, cet3 and cet4.1 were crossed with the fad triple and coi1 mutants that are blocked at two steps within the JA-dependent signaling pathway, and with transgenic NahG plants that are deficient in salicylic acid (SA) and are unable to activate SAR. Analysis of the various double-mutant lines revealed that the four cet genes act within a signaling cascade at or prior to branch points from which not only JA-dependent signals but also SA-dependent signaling and cell death pathways diverge.
IPB Mainnav Search