zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 20.

Publikation

Grubb, C. D.; Zipp, B. J.; Ludwig-Müller, J.; Masuno, M. N.; Molinski, T. F.; Abel, S.; Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis Plant J. 40, 893-908, (2004) DOI: 10.1111/j.1365-313X.2004.02261.x

Glucosinolates are a class of secondary metabolites with important roles in plant defense and human nutrition. Here, we characterize a putative UDP‐glucose:thiohydroximate S‐glucosyltransferase, UGT74B1, to determine its role in the Arabidopsis glucosinolate pathway. Biochemical analyses demonstrate that recombinant UGT74B1 specifically glucosylates the thiohydroximate functional group. Low K m values for phenylacetothiohydroximic acid (approximately 6 μ m ) and UDP‐glucose (approximately 50 μm ) strongly suggest that thiohydroximates are in vivo substrates of UGT74B1. Insertional loss‐of‐function ugt74b1 mutants exhibit significantly decreased, but not abolished, glucosinolate accumulation. In addition, ugt74b1 mutants display phenotypes reminiscent of auxin overproduction, such as epinastic cotyledons, elongated hypocotyls in light‐grown plants, excess adventitious rooting and incomplete leaf vascularization. Indeed, during early plant development, mutant ugt74b1 seedlings accumulate nearly threefold more indole‐3‐acetic acid than the wild type. Other phenotypes, however, such as chlorosis along the leaf veins, are likely caused by thiohydroximate toxicity. Analysis of UGT74B1 promoter activity during plant development reveals expression patterns consistent with glucosinolate metabolism and induction by auxin treatment. The results are discussed in the context of known mutations in glucosinolate pathway genes and their effects on auxin homeostasis. Taken together, our work provides complementary in vitro and in vivo evidence for a primary role of UGT74B1 in glucosinolate biosynthesis.
Publikation

Ticconi, C. A.; Abel, S.; Short on phosphate: plant surveillance and countermeasures Trends Plant Sci. 9, 548-555, (2004) DOI: 10.1016/j.tplants.2004.09.003

Metabolism depends on inorganic phosphate (Pi) as reactant, allosteric effector and regulatory moiety in covalent protein modification. To cope with Pi shortage (a common situation in many ecosystems), plants activate a set of adaptive responses to enhance Pi recycling and acquisition by reprogramming metabolism and restructuring root system architecture. The physiology of Pi starvation responses has become well understood, and so current research focuses on the initial molecular events that sense, transmit and integrate information about external and internal Pi status. Recent studies have provided evidence for Pi as a signaling molecule and initial insight into the coordination of Pi deficiency responses at the cellular and molecular level.
Publikation

Ticconi, C. A.; Delatorre, C. A.; Lahner, B.; Salt, D. E.; Abel, S.; Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development Plant J. 37, 801-814, (2004) DOI: 10.1111/j.1365-313x.2004.02005.x

Plants have evolved complex strategies to maintain phosphate (Pi) homeostasis and to maximize Pi acquisition when the macronutrient is limiting. Adjustment of root system architecture via changes in meristem initiation and activity is integral to the acclimation process. However, the mechanisms that monitor external Pi status and interpret the nutritional signal remain to be elucidated. Here, we present evidence that the Pi deficiency response , pdr2 , mutation disrupts local Pi sensing. The sensitivity and amplitude of metabolic Pi‐starvation responses, such as Pi‐responsive gene expression or accumulation of anthocyanins and starch, are enhanced in pdr2 seedlings. However, the most conspicuous alteration of pdr2 is a conditional short‐root phenotype that is specific for Pi deficiency and caused by selective inhibition of root cell division followed by cell death below a threshold concentration of about 0.1 mm external Pi. Measurements of general Pi uptake and of total phosphorus (P) in root tips exclude a defect in high‐affinity Pi acquisition. Rescue of root meristem activity in Pi‐starved pdr2 by phosphite (Phi), a non‐metabolizable Pi analog, and divided‐root experiments suggest that pdr2 disrupts sensing of low external Pi availability. Thus, PDR2 is proposed to function at a Pi‐sensitive checkpoint in root development, which monitors environmental Pi status, maintains and fine‐tunes meristematic activity, and finally adjusts root system architecture to maximize Pi acquisition.
Publikation

Miersch, O.; Weichert, H.; Stenzel, I.; Hause, B.; Maucher, H.; Feussner, I.; Wasternack, C.; Constitutive overexpression of allene oxide cyclase in tomato (Lycopersicon esculentum cv. Lukullus) elevates levels of some jasmonates and octadecanoids in flower organs but not in leaves Phytochemistry 65, 847-856, (2004) DOI: 10.1016/j.phytochem.2004.01.016

The allene oxide cyclase (AOC), an enzyme in jasmonate biosynthesis, occurs in vascular bundles and ovules of tomato flowers which exhibit a tissue-specific oxylipin signature (Plant J. 24, 113-126, 2000). Constitutive overexpression of the AOC did not led to altered levels of jasmonates in leaves, but these levels increased upon wounding or other stresses suggesting regulation of jasmonate biosynthesis by substrate availability (Plant J. 33, 577-589, 2003). Here, we show dramatic changes in levels of jasmonic acid (JA), of 12-oxo-phytodienoic acid (OPDA), their methyl esters (JAME, OPDAME), and of dinor-OPDA in most flower organs upon constitutive overexpression of AOC. Beside a dominant occurrence of OPDAME and JA in most flower organs, the ratio among the various compounds was altered differentially in the organs of transgenic flowers, e.g. OPDAME increased up to 53-fold in stamen, and JA increased about 51-fold in buds and 7.5-fold in sepals. The increase in jasmonates and octadecanoids was accompanied by decreased levels of free lipid hydro(per)oxy compounds. Except for 16:2, the AOC overexpression led to a significant increase in free but not esterified polyunsaturated fatty acids in all flower organs. The data suggest different regulation of JA biosynthesis in leaves and flowers of tomato.Constitutive overexpression of the AOC increases in all flower organs levels of some jasmonates and octadecanoids, alters the ratios among the compounds, decreases levels of free lipid hydro(per)oxy compounds and increases levels of free but not of esterified polyunsaturated fatty acids.
Publikation

Bachmann, A.; Hause, B.; Maucher, H.; Garbe, E.; Vörös, K.; Weichert, H.; Wasternack, C.; Feussner, I.; Jasmonate-Induced Lipid Peroxidation in Barley Leaves Initiated by Distinct 13-LOX Forms of Chloroplasts Biol. Chem. 383, 1645-1657, (2002) DOI: 10.1515/BC.2002.185

In addition to a previously characterized 13-lipoxygenase of 100 kDa encoded by LOX2:Hv:1 [Vörös et al., Eur. J. Biochem. 251 (1998), 36 44], two fulllength cDNAs (LOX2:Hv:2, LOX2:Hv:3) were isolated from barley leaves (Hordeum vulgare cv. Salome) and characterized. Both of them encode 13-lipoxygenases with putative target sequences for chloroplast import. Immunogold labeling revealed preferential, if not exclusive, localization of lipoxygenase proteins in the stroma. The ultrastructure of the chloroplast was dramatically altered following methyl jasmonate treatment, indicated by a loss of thylakoid membranes, decreased number of stacks and appearance of numerous osmiophilic globuli. The three 13-lipoxygenases are differentially expressed during treatment with jasmonate, salicylate, glucose or sorbitol. Metabolite profiling of free linolenic acid and free linoleic acid, the substrates of lipoxygenases, in water floated or jasmonatetreated leaves revealed preferential accumulation of linolenic acid. Remarkable amounts of free 9- as well as 13-hydroperoxy linolenic acid were found. In addition, metabolites of these hydroperoxides, such as the hydroxy derivatives and the respective aldehydes, appeared following methyl jasmonate treatment. These findings were substantiated by metabolite profiling of isolated chloroplasts, and subfractions including the envelope, the stroma and the thylakoids, indicating a preferential occurrence of lipoxygenasederived products in the stroma and in the envelope. These data revealed jasmonateinduced activation of the hydroperoxide lyase and reductase branch within the lipoxygenase pathway and suggest differential activity of the three 13-lipoxygenases under different stress conditions.
Publikation

Abel, S.; Ticconi, C. A.; Delatorre, C. A.; Phosphate sensing in higher plants Physiol. Plant. 115, 1-8, (2002) DOI: 10.1034/j.1399-3054.2002.1150101.x

Phosphate (Pi) plays a central role as reactant and effector molecule in plant cell metabolism. However, Pi is the least accessible macronutrient in many ecosystems and its low availability often limits plant growth. Plants have evolved an array of molecular and morphological adaptations to cope with Pi limitation, which include dramatic changes in gene expression and root development to facilitate Pi acquisition and recycling. Although physiological responses to Pi starvation have been increasingly studied and understood, the initial molecular events that monitor and transmit information on external and internal Pi status remain to be elucidated in plants. This review summarizes molecular and developmental Pi starvation responses of higher plants and the evidence for coordinated regulation of gene expression, followed by a discussion of the potential involvement of plant hormones in Pi sensing and of molecular genetic approaches to elucidate plant signalling of low Pi availability. Complementary genetic strategies in Arabidopsis thaliana have been developed that are expected to identify components of plant signal transduction pathways involved in Pi sensing. Innovative screening methods utilize reporter gene constructs, conditional growth on organophosphates and the inhibitory properties of the Pi analogue phosphite, which hold the promise for significant advances in our understanding of the complex mechanisms by which plants regulate Pi‐starvation responses.
Publikation

Weichert, H.; Kolbe, A.; Kraus, A.; Wasternack, C.; Feussner, I.; Metabolic profiling of oxylipins in germinating cucumber seedlings - lipoxygenase-dependent degradation of triacylglycerols and biosynthesis of volatile aldehydes Planta 215, 612-619, (2002) DOI: 10.1007/s00425-002-0779-4

A particular isoform of lipoxygenase (LOX) localized on lipid bodies was shown by earlier investigations to play a role in initiating the mobilization of triacylglycerols during seed germination. Here, further physiological functions of LOXs within whole cotyledons of cucumber (Cucumis sativus L.) were analyzed by measuring the endogenous amounts of LOX-derived products. The lipid-body LOX-derived esterified (13S)-hydroperoxy linoleic acid was the dominant metabolite of the LOX pathway in this tissue. It accumulated to about 14 µmol/g fresh weight, which represented about 6% of the total amount of linoleic acid in cotyledons. This LOX product was not only reduced to its hydroxy derivative, leading to degradation by β-oxidation, but alternatively it was metabolized by fatty acid hydroperoxide lyase leading to formation of hexanal as well. Furthermore, the activities of LOX forms metabolizing linolenic acid were detected by measuring the accumulation of volatile aldehydes and the allene oxide synthase-derived metabolite jasmonic acid. The first evidence is presented for an involvement of a lipid-body LOX form in the production of volatile aldehydes.
Publikation

Wang, Q.; Grubb, C. D.; Abel, S.; Direct analysis of single leaf disks for chemopreventive glucosinolates Phytochem. Anal. 13, 152-157, (2002) DOI: 10.1002/pca.636

Natural isothiocyanates, produced during plant tissue damage from methionine‐derived glucosinolates, are potent inducers of mammalian phase 2 detoxification enzymes such as quinone reductase (QR). A greatly simplified bioassay for glucosinolates based on induction and colorimetric detection of QR activity in murine hepatoma cells is described. It is demonstrated that excised leaf disks of Arabidopsis thaliana (ecotype Columbia) can directly and reproducibly substitute for cell‐free leaf extracts as inducers of murine QR, which reduces sample preparation to a minimum and maximizes throughput. A comparison of 1 and 3 mm diameter leaf disks indicated that QR inducer potency was proportional to disk circumference (extent of tissue damage) rather than to area. When compared to the QR inducer potency of the corresponding amount of extract, 1 mm leaf disks were equally effective, whereas 3 mm disks were 70% as potent. The QR inducer potency of leaf disks correlated positively with the content of methionine‐derived glucosinolates, as shown by the analysis of wild‐type plants and mutant lines with lower or higher glucosinolate content. Thus, the microtitre plate‐based assay of single leaf disks provides a robust and inexpensive visual method for rapidly screening large numbers of plants in mapping populations or mutant collections and may be applicable to other glucosinolate‐producing species.
Publikation

Vigliocco, A.; Bonamico, B.; Alemano, S.; Miersch, O.; Abdala, G.; Stimulation of jasmonic acid production in Zea Mays L. infected by the maize rough dwarf virus - Río Cuarto. Reversion of symptoms by salicylic acid Biocell 26, 369-374, (2002)

In the present paper we study the possible biological relevance of endogenous jasmonic acid (JA) and exogenous salicylic acid (SA) in a plant-microbial system maize-virus. The virus disease "Mal de Río Cuarto" is caused by the maize rough dwarf virus - Río Cuarto. The characteristic symptoms are the appearance of galls or "enations" in leaves, shortening of the stem internodes, poor radical system and general stunting. Changes in JA and protein pattern in maize control and infected plants of a virus-tolerant cultivar were investigated. Healthy and infected-leaf discs were collected for JA measurement at different post-infection times (20, 40, 60 and 68 days). JA was also measured in roots on day 60 after infection. For SDS-PAGE protein analysis, leaf discs were also harvested on day 60 after infection. Infected leaves showed higher levels of JA than healthy leaves, and the rise in endogenous JA coincided with the enation formation. The soluble protein amount did not show differences between infected and healthy leaves; moreover, no difference in the expression of soluble protein was revealed by SDS-PAGE. Our results show that the octadecanoid pathway was stimulated in leaves and roots of the tolerant maize cultivar when infected by this virus. This finding, together with fewer plants with the disease symptoms, suggest that higher foliar and roots JA content may be related to disease tolerance. SA exogenous treatment caused the reversion of the dwarfism symptom.
Publikation

Laskowski, M. J.; Dreher, K. A.; Gehring, M. A.; Abel, S.; Gensler, A. L.; Sussex, I. M.; FQR1, a Novel Primary Auxin-Response Gene, Encodes a Flavin Mononucleotide-Binding Quinone Reductase Plant Physiol. 128, 578-590, (2002) DOI: 10.1104/pp.010581

FQR1 is a novel primary auxin-response gene that codes for a flavin mononucleotide-binding flavodoxin-like quinone reductase. Accumulation of FQR1 mRNA begins within 10 min of indole-3-acetic acid application and reaches a maximum of approximately 10-fold induction 30 min after treatment. This increase in FQR1 mRNA abundance is not diminished by the protein synthesis inhibitor cycloheximide, demonstrating thatFQR1 is a primary auxin-response gene. Sequence analysis reveals that FQR1 belongs to a family of flavin mononucleotide-binding quinone reductases. Partially purified His-tagged FQR1 isolated fromEscherichia coli catalyzes the transfer of electrons from NADH and NADPH to several substrates and exhibits in vitro quinone reductase activity. Overexpression of FQR1 in plants leads to increased levels of FQR1 protein and quinone reductase activity, indicating that FQR1 functions as a quinone reductase in vivo. In mammalian systems, glutathione S-transferases and quinone reductases are classified as phase II detoxification enzymes. We hypothesize that the auxin-inducible glutathioneS-transferases and quinone reductases found in plants also act as detoxification enzymes, possibly to protect against auxin-induced oxidative stress.
IPB Mainnav Search