zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 31.

Publikation

Stumpe, M.; Göbel, C.; Faltin, B.; Beike, A. K.; Hause, B.; Himmelsbach, K.; Bode, J.; Kramell, R.; Wasternack, C.; Frank, W.; Reski, R.; Feussner, I.; The moss Physcomitrella patens contains cyclopentenones but no jasmonates: mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology New Phytol. 188, 740-749, (2010) DOI: 10.1111/j.1469-8137.2010.03406.x

Two cDNAs encoding allene oxide cyclases (PpAOC1, PpAOC2), key enzymes in the formation of jasmonic acid (JA) and its precursor (9S,13S)‐12‐oxo‐phytodienoic acid (cis‐(+)‐OPDA), were isolated from the moss Physcomitrella patens.Recombinant PpAOC1 and PpAOC2 show substrate specificity against the allene oxide derived from 13‐hydroperoxy linolenic acid (13‐HPOTE); PpAOC2 also shows substrate specificity against the allene oxide derived from 12‐hydroperoxy arachidonic acid (12‐HPETE).In protonema and gametophores the occurrence of cis‐(+)‐OPDA, but neither JA nor the isoleucine conjugate of JA nor that of cis‐(+)‐OPDA was detected.Targeted knockout mutants for PpAOC1 and for PpAOC2 were generated, while double mutants could not be obtained. The ΔPpAOC1 and ΔPpAOC2 mutants showed reduced fertility, aberrant sporophyte morphology and interrupted sporogenesis.
Publikation

Ziegler, J.; Facchini, P. J.; Geißler, R.; Schmidt, J.; Ammer, C.; Kramell, R.; Voigtländer, S.; Gesell, A.; Pienkny, S.; Brandt, W.; Evolution of morphine biosynthesis in opium poppy Phytochemistry 70, 1696-1707, (2009) DOI: 10.1016/j.phytochem.2009.07.006

Benzylisoquinoline alkaloids (BIAs) are a group of nitrogen-containing plant secondary metabolites comprised of an estimated 2500 identified structures. In BIA metabolism, (S)-reticuline is a key branch-point intermediate that can be directed into several alkaloid subtypes with different structural skeleton configurations. The morphinan alkaloids are one subclass of BIAs produced in only a few plant species, most notably and abundantly in the opium poppy (Papaver somniferum). Comparative transcriptome analysis of opium poppy and several other Papaver species that do not accumulate morphinan alkaloids showed that known genes encoding BIA biosynthetic enzymes are expressed at higher levels in P. somniferum. Three unknown cDNAs that are co-ordinately expressed with several BIA biosynthetic genes were identified as enzymes in the pathway. One of these enzymes, salutaridine reductase (SalR), which is specific for the production of morphinan alkaloids, was isolated and heterologously overexpressed in its active form not only from P. somniferum, but also from Papaver species that do not produce morphinan alkaloids. SalR is a member of a class of short chain dehydrogenase/reductases (SDRs) that are active as monomers and possess an extended amino acid sequence compared with classical SDRs. Homology modelling and substrate docking revealed the substrate binding site for SalR. The amino acids residues conferring salutaridine binding were compared to several members of the SDR family from different plant species, which non-specifically reduce (−)-menthone to (+)-neomenthol. Previously, it was shown that some of these proteins are involved in plant defence. The recruitment of specific monomeric SDRs from monomeric SDRs involved in plant defence is discussed.
Publikation

Pienkny, S.; Brandt, W.; Schmidt, J.; Kramell, R.; Ziegler, J.; Functional characterization of a novel benzylisoquinoline O-methyltransferase suggests its involvement in papaverine biosynthesis in opium poppy (Papaver somniferum L) Plant J. 60, 56-67, (2009) DOI: 10.1111/j.1365-313X.2009.03937.x

The benzylisoquinoline alkaloids are a highly diverse group of about 2500 compounds which accumulate in a species‐specific manner. Despite the numerous compounds which could be identified, the biosynthetic pathways and the participating enzymes or cDNAs could be characterized only for a few selected members, whereas the biosynthesis of the majority of the compounds is still largely unknown. In an attempt to characterize additional biosynthetic steps at the molecular level, integration of alkaloid and transcript profiling across Papaver species was performed. This analysis showed high expression of an expressed sequence tag (EST) of unknown function only in Papaver somniferum varieties. After full‐length cloning of the open reading frame and sequence analysis, this EST could be classified as a member of the class II type O ‐methyltransferase protein family. It was related to O ‐methyltransferases from benzylisoquinoline biosynthesis, and the amino acid sequence showed 68% identical residues to norcoclaurine 6‐O ‐methyltransferase. However, rather than methylating norcoclaurine, the recombinant protein methylated norreticuline at position seven with a K m of 44 μm using S ‐adenosyl‐l ‐methionine as a cofactor. Of all substrates tested, only norreticuline was converted. Even minor changes in the benzylisoquinoline backbone were not tolerated by the enzyme. Accordingly, the enzyme was named norreticuline 7–O ‐methyltransferase (N7OMT). This enzyme represents a novel O ‐methyltransferase in benzylisoquinoline metabolism. Expression analysis showed slightly increased expression of N7OMT in P. somniferum varieties containing papaverine, suggesting its involvement in the partially unknown biosynthesis of this pharmaceutically important compound.
Publikation

Mugford, S. G.; Yoshimoto, N.; Reichelt, M.; Wirtz, M.; Hill, L.; Mugford, S. T.; Nakazato, Y.; Noji, M.; Takahashi, H.; Kramell, R.; Gigolashvili, T.; Flügge, U.-I.; Wasternack, C.; Gershenzon, J.; Hell, R.; Saito, K.; Kopriva, S.; Disruption of Adenosine-5′-Phosphosulfate Kinase in Arabidopsis Reduces Levels of Sulfated Secondary Metabolites Plant Cell 21, 910-927, (2009) DOI: 10.1105/tpc.109.065581

Plants can metabolize sulfate by two pathways, which branch at the level of adenosine 5′-phosphosulfate (APS). APS can be reduced to sulfide and incorporated into Cys in the primary sulfate assimilation pathway or phosphorylated by APS kinase to 3′-phosphoadenosine 5′-phosphosulfate, which is the activated sulfate form for sulfation reactions. To assess to what extent APS kinase regulates accumulation of sulfated compounds, we analyzed the corresponding gene family in Arabidopsis thaliana. Analysis of T-DNA insertion knockout lines for each of the four isoforms did not reveal any phenotypical alterations. However, when all six combinations of double mutants were compared, the apk1 apk2 plants were significantly smaller than wild-type plants. The levels of glucosinolates, a major class of sulfated secondary metabolites, and the sulfated 12-hydroxyjasmonate were reduced approximately fivefold in apk1 apk2 plants. Although auxin levels were increased in the apk1 apk2 mutants, as is the case for most plants with compromised glucosinolate synthesis, typical high auxin phenotypes were not observed. The reduction in glucosinolates resulted in increased transcript levels for genes involved in glucosinolate biosynthesis and accumulation of desulfated precursors. It also led to great alterations in sulfur metabolism: the levels of sulfate and thiols increased in the apk1 apk2 plants. The data indicate that the APK1 and APK2 isoforms of APS kinase play a major role in the synthesis of secondary sulfated metabolites and are required for normal growth rates.
Publikation

Lee, C.-W.; Efetova, M.; Engelmann, J. C.; Kramell, R.; Wasternack, C.; Ludwig-Müller, J.; Hedrich, R.; Deeken, R.; Agrobacterium tumefaciens Promotes Tumor Induction by Modulating Pathogen Defense in Arabidopsis thaliana Plant Cell 21, 2948-2962, (2009) DOI: 10.1105/tpc.108.064576

Agrobacterium tumefaciens causes crown gall disease by transferring and integrating bacterial DNA (T-DNA) into the plant genome. To examine the physiological changes and adaptations during Agrobacterium-induced tumor development, we compared the profiles of salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and auxin (indole-3-acetic acid [IAA]) with changes in the Arabidopsis thaliana transcriptome. Our data indicate that host responses were much stronger toward the oncogenic strain C58 than to the disarmed strain GV3101 and that auxin acts as a key modulator of the Arabidopsis–Agrobacterium interaction. At initiation of infection, elevated levels of IAA and ET were associated with the induction of host genes involved in IAA, but not ET signaling. After T-DNA integration, SA as well as IAA and ET accumulated, but JA did not. This did not correlate with SA-controlled pathogenesis-related gene expression in the host, although high SA levels in mutant plants prevented tumor development, while low levels promoted it. Our data are consistent with a scenario in which ET and later on SA control virulence of agrobacteria, whereas ET and auxin stimulate neovascularization during tumor formation. We suggest that crosstalk among IAA, ET, and SA balances pathogen defense launched by the host and tumor growth initiated by agrobacteria.
Publikation

Fonseca, S.; Chini, A.; Hamberg, M.; Adie, B.; Porzel, A.; Kramell, R.; Miersch, O.; Wasternack, C.; Solano, R.; (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate Nat. Chem. Biol. 5, 344-350, (2009) DOI: 10.1038/nchembio.161

Hormone-triggered activation of the jasmonate signaling pathway in Arabidopsis thaliana requires SCFCOI1-mediated proteasome degradation of JAZ repressors. (−)-JA-L-Ile is the proposed bioactive hormone, and SCFCOI1 is its likely receptor. We found that the biological activity of (−)-JA-L-Ile is unexpectedly low compared to coronatine and the synthetic isomer (+)-JA-L-Ile, which suggests that the stereochemical orientation of the cyclopentanone-ring side chains greatly affects receptor binding. Detailed GC-MS and HPLC analyses showed that the (−)-JA-L-Ile preparations currently used in ligand binding studies contain small amounts of the C7 epimer (+)-7-iso-JA-L-Ile. Purification of each of these molecules demonstrated that pure (−)-JA-L-Ile is inactive and that the active hormone is (+)-7-iso-JA-L-Ile, which is also structurally more similar to coronatine. In addition, we show that pH changes promote conversion of (+)-7-iso-JA-L-Ile to the inactive (−)-JA-L-Ile form, thus providing a simple mechanism that can regulate hormone activity through epimerization.
Publikation

Floß, D. S.; Hause, B.; Lange, P. R.; Küster, H.; Strack, D.; Walter, M. H.; Knock-down of the MEP pathway isogene 1-deoxy-d-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes Plant J. 56, 86-100, (2008) DOI: 10.1111/j.1365-313X.2008.03575.x

The first step of the plastidial methylerythritol phosphate (MEP) pathway is catalyzed by two isoforms of 1‐deoxy‐d‐ xylulose 5‐phosphate synthase (DXS1 and DXS2). In Medicago truncatula , MtDXS1 and MtDXS2 genes exhibit completely different expression patterns. Most prominently, colonization by arbuscular mycorrhizal (AM) fungi induces the accumulation of certain apocarotenoids (cyclohexenone and mycorradicin derivatives) correlated with the expression of MtDXS2 but not of MtDXS1. To prove a distinct function of DXS2, a selective RNAi approach on MtDXS2 expression was performed in transgenic hairy roots of M. truncatula. Repression of MtDXS2 consistently led to reduced transcript levels in mycorrhizal roots, and to a concomitant reduction of AM‐induced apocarotenoid accumulation. The transcript levels of MtDXS1 remained unaltered in RNAi plants, and no phenotypical changes in non‐AM plants were observed. Late stages of the AM symbiosis were adversely affected, but only upon strong repression with residual MtDXS2‐1 transcript levels remaining below approximately 10%. This condition resulted in a strong decrease in the transcript levels of MtPT4 , an AM‐specific plant phosphate transporter gene, and in a multitude of other AM‐induced plant marker genes, as shown by transcriptome analysis. This was accompanied by an increased proportion of degenerating and dead arbuscules at the expense of mature ones. The data reveal a requirement for DXS2‐dependent MEP pathway‐based isoprenoid products to sustain mycorrhizal functionality at later stages of the symbiosis. They further validate the concept of a distinct role for DXS2 in secondary metabolism, and offer a novel tool to selectively manipulate the levels of secondary isoprenoids by targeting their precursor supply.
Publikation

Vigliocco, A.; Alemano, S.; Miersch, O.; Alvarez, D.; Abdala, G.; Endogenous jasmonates in dry and imbibed sunflower seeds from plants grown at different soil moisture contents Seed Sci. Res. 17, 91-98, (2007) DOI: 10.1017/S0960258507708371

In this study, we characterized two sunflower (Helianthus annuus L.) lines with differential sensitivity to drought, the sensitive line B59 and the tolerant line B71. Using both lines, we compared the content of endogenous jasmonates (JAs) in dry and imbibed seeds from plants grown under irrigation and drought. Jasmonic acid (JA), 12-oxo-phytodienoic acid (OPDA), 11-hydroxyjasmonate (11-OH-JA) and 12-hydroxyjasmonate (12-OH-JA) were detected in dry and imbibed sunflower seeds. Seeds from plants grown under drought had a lower content of total JAs and exhibited higher germination percentages than seeds from irrigated plants, demonstrating that environmental conditions have a strong influence on the progeny. OPDA and 12-OH-JA were the main compounds found in dry seeds of both lines. Imbibed seeds showed an enhanced amount of total JAs with respect to dry seeds produced by plants grown in both soil moisture conditions. Imbibition triggered a dramatic OPDA increase in the embryo, suggesting a role of this compound in germination. We conclude that JAs patterns vary during sunflower germination and that the environmental conditions experienced by the mother plant modify the hormonal content of the seed progeny.
Publikation

ten Hoopen, P.; Hunger, A.; Muller, A.; Hause, B.; Kramell, R.; Wasternack, C.; Rosahl, S.; Conrad, U.; Immunomodulation of jasmonate to manipulate the wound response J. Exp. Bot. 58, 2525-2535, (2007) DOI: 10.1093/jxb/erm122

Jasmonates are signals in plant stress responses and development. The exact mode of their action is still controversial. To modulate jasmonate levels intracellularly as well as compartment-specifically, transgenic Nicotiana tabacum plants expressing single-chain antibodies selected against the naturally occurring (3R,7R)-enantiomer of jasmonic acid (JA) were created in the cytosol and the endoplasmic reticulum. Consequently, the expression of anti-JA antibodies in planta caused JA-deficient phenotypes such as insensitivity of germinating transgenic seedlings towards methyl jasmonate and the loss of wound-induced gene expression. Results presented here suggest an essential role for cytosolic JA in the wound response of tobacco plants. The findings support the view that substrate availability takes part in regulating JA biosynthesis upon wounding. Moreover, high JA levels observed in immunomodulated plants in response to wounding suggest that tobacco plants are able to perceive a reduced level of physiologically active JA and attempt to compensate for this by increased JA accumulation.
IPB Mainnav Search