zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 10.

Publikation

Serra, P.; Carbonell, A.; Navarro, B.; Gago-Zachert, S.; Li, S.; Di Serio, F.; Flores, R.; Symptomatic plant viroid infections in phytopathogenic fungi: A request for a critical reassessment Proc. Natl. Acad. Sci. U.S.A. 117, 10126-10128, (2020) DOI: 10.1073/pnas.1922249117

0
Bücher und Buchkapitel

Flores, R.; Gago-Zachert, S.; Serra, P.; De la Peña, M.; Navarro, B.; Chrysanthemum Chlorotic Mottle Viroid (Hadidi, A., et al., eds.). 331-338, (2017) DOI: 10.1016/B978-0-12-801498-1.00031-0

Chrysanthemum chlorotic mottle viroid (CChMVd) (398–401 nt) belongs to genus Pelamoviroid, family Avsunviroidae and, like other members of this family, replicates in plastids through a rolling-circle mechanism involving hammerhead ribozymes. CChMVd RNA adopts a branched conformation stabilized by a kissing-loop interaction, resembling peach latent mosaic viroid in this respect. Chrysanthemum is the only natural and experimental host for CChMVd, which in the most sensitive varieties induces leaf mottling and chlorosis, delay in flowering, and dwarfing. The viroid has been found in major chrysanthemum growing areas including Europe and Asia. There are natural variants in which the change (UUUC→GAAA) mapping at a tetraloop in the CChMVd branched conformation is sufficient to change the symptomatic phenotype into a nonsymptomatic one without altering the viroid titer. Preinfection with nonsymptomatic variants prevents challenge inoculation with symptomatic ones. Moreover, experimental coinoculation with symptomatic and nonsymptomatic CChMVd variants results in symptomless phenotypes only when the latter is in vast excess, thus indicating its lower fitness.
Publikation

Gasperini, D.; Acosta, I. F.; Farmer, E. E.; Cotyledon Wounding of Arabidopsis Seedlings Bio Protoc. 6, e1712, (2016) DOI: 10.21769/BioProtoc.1712

Damage to plant organs through both biotic and abiotic injury is very common in nature. Arabidopsis thaliana 5-day-old (5-do) seedlings represent an excellent system in which to study plant responses to mechanical wounding, both at the site of the damage and in distal unharmed tissues. Seedlings of wild type, transgenic or mutant lines subjected to single or repetitive cotyledon wounding can be used to quantify morphological alterations (e.g., root length, Gasperini et al., 2015), analyze the dynamics of reporter genes in vivo (Larrieu et al., 2015; Gasperini et al., 2015), follow transcriptional changes by quantitative RT-PCR (Acosta et al., 2013; Gasperini et al., 2015) or examine additional aspects of the wound response with a plethora of downstream procedures. Here we illustrate how to rapidly and reliably wound cotyledons of young seedlings, and show the behavior of two promoters driving the expression of β-glucuronidase (GUS) in entire seedlings and in the primary root meristem, following single or repetitive cotyledon wounding respectively. We describe two procedures that can be easily adapted to specific experimental needs.
Publikation

Gasperini, D.; Chételat, A.; Acosta, I. F.; Goossens, J.; Pauwels, L.; Goossens, A.; Dreos, R.; Alfonso, E.; Farmer, E. E.; Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth PLOS Genet. 11, e1005300, (2015) DOI: 10.1371/journal.pgen.1005300

Physical damage can strongly affect plant growth, reducing the biomass of developing organs situated at a distance from wounds. These effects, previously studied in leaves, require the activation of jasmonate (JA) signalling. Using a novel assay involving repetitive cotyledon wounding in Arabidopsis seedlings, we uncovered a function of JA in suppressing cell division and elongation in roots. Regulatory JA signalling components were then manipulated to delineate their relative impacts on root growth. The new transcription factor mutant myc2-322B was isolated. In vitro transcription assays and whole-plant approaches revealed that myc2-322B is a dosage-dependent gain-of-function mutant that can amplify JA growth responses. Moreover, myc2-322B displayed extreme hypersensitivity to JA that totally suppressed root elongation. The mutation weakly reduced root growth in undamaged plants but, when the upstream negative regulator NINJA was genetically removed, myc2-322B powerfully repressed root growth through its effects on cell division and cell elongation. Furthermore, in a JA-deficient mutant background, ninja1 myc2-322B still repressed root elongation, indicating that it is possible to generate JA-responses in the absence of JA. We show that NINJA forms a broadly expressed regulatory layer that is required to inhibit JA signalling in the apex of roots grown under basal conditions. By contrast, MYC2, MYC3 and MYC4 displayed cell layer-specific localisations and MYC3 and MYC4 were expressed in mutually exclusive regions. In nature, growing roots are likely subjected to constant mechanical stress during soil penetration that could lead to JA production and subsequent detrimental effects on growth. Our data reveal how distinct negative regulatory layers, including both NINJA-dependent and -independent mechanisms, restrain JA responses to allow normal root growth. Mechanistic insights from this work underline the importance of mapping JA signalling components to specific cell types in order to understand and potentially engineer the growth reduction that follows physical damage.
Publikation

Gasperini, D.; Chauvin, A.; Acosta, I. F.; Kurenda, A.; Stolz, S.; Chételat, A.; Wolfender, J.-L.; Farmer, E. E.; Axial and Radial Oxylipin Transport Plant Physiol. 169, 2244-2254, (2015) DOI: 10.1104/pp.15.01104

Jasmonates are oxygenated lipids (oxylipins) that control defense gene expression in response to cell damage in plants. How mobile are these potent mediators within tissues? Exploiting a series of 13-lipoxygenase (13-lox) mutants in Arabidopsis (Arabidopsis thaliana) that displays impaired jasmonic acid (JA) synthesis in specific cell types and using JA-inducible reporters, we mapped the extent of the transport of endogenous jasmonates across the plant vegetative growth phase. In seedlings, we found that jasmonate (or JA precursors) could translocate axially from wounded shoots to unwounded roots in a LOX2-dependent manner. Grafting experiments with the wild type and JA-deficient mutants confirmed shoot-to-root oxylipin transport. Next, we used rosettes to investigate radial cell-to-cell transport of jasmonates. After finding that the LOX6 protein localized to xylem contact cells was not wound inducible, we used the lox234 triple mutant to genetically isolate LOX6 as the only JA precursor-producing LOX in the plant. When a leaf of this mutant was wounded, the JA reporter gene was expressed in distal leaves. Leaf sectioning showed that JA reporter expression extended from contact cells throughout the vascular bundle and into extravascular cells, revealing a radial movement of jasmonates. Our results add a crucial element to a growing picture of how the distal wound response is regulated in rosettes, showing that both axial (shoot-to-root) and radial (cell-to-cell) transport of oxylipins plays a major role in the wound response. The strategies developed herein provide unique tools with which to identify intercellular jasmonate transport routes.
Publikation

Flores, R.; Gago-Zachert, S.; Serra, P.; Sanjuán, R.; Elena, S. F.; Viroids: Survivors from the RNA World? Annu. Rev. Microbiol. 68, 395-414, (2014) DOI: 10.1146/annurev-micro-091313-103416

Because RNA can be a carrier of genetic information and a biocatalyst, there is a consensus that it emerged before DNA and proteins, which eventually assumed these roles and relegated RNA to intermediate functions. If such a scenario—the so-called RNA world—existed, we might hope to find its relics in our present world. The properties of viroids that make them candidates for being survivors of the RNA world include those expected for primitive RNA replicons: (a) small size imposed by error-prone replication, (b) high G + C content to increase replication fidelity, (c) circular structure for assuring complete replication without genomic tags, (d) structural periodicity for modular assembly into enlarged genomes, (e) lack of protein-coding ability consistent with a ribosome-free habitat, and (f) replication mediated in some by ribozymes, the fingerprint of the RNA world. With the advent of DNA and proteins, those protoviroids lost some abilities and became the plant parasites we now know.
Publikation

Farmer, E. E.; Gasperini, D.; Acosta, I. F.; The squeeze cell hypothesis for the activation of jasmonate synthesis in response to wounding New Phytol. 204, 282-288, (2014) DOI: 10.1111/nph.12897

Jasmonates are lipid mediators that control defence gene expression in response to wounding and other environmental stresses. These small molecules can accumulate at distances up to several cm from sites of damage and this is likely to involve cell‐to‐cell jasmonate transport. Also, and independently of jasmonate synthesis, transport and perception, different long‐distance wound signals that stimulate distal jasmonate synthesis are propagated at apparent speeds of several cm min–1 to tissues distal to wounds in a mechanism that involves clade 3 GLUTAMATE RECEPTOR‐LIKE (GLR) genes. A search for jasmonate synthesis enzymes that might decode these signals revealed LOX6, a lipoxygenase that is necessary for much of the rapid accumulation of jasmonic acid at sites distal to wounds. Intriguingly, the LOX6 promoter is expressed in a distinct niche of cells that are adjacent to mature xylem vessels, a location that would make these contact cells sensitive to the release of xylem water column tension upon wounding. We propose a model in which rapid axial changes in xylem hydrostatic pressure caused by wounding travel through the vasculature and lead to slower, radially dispersed pressure changes that act in a clade 3 GLR‐dependent mechanism to promote distal jasmonate synthesis.
Publikation

Acosta, I. F.; Gasperini, D.; Chételat, A.; Stolz, S.; Santuari, L.; Farmer, E. E.; Role of NINJA in root jasmonate signaling Proc. Natl. Acad. Sci. U.S.A. 110, 15473-15478, (2013) DOI: 10.1073/pnas.1307910110

Wound responses in plants have to be coordinated between organs so that locally reduced growth in a wounded tissue is balanced by appropriate growth elsewhere in the body. We used a JASMONATE ZIM DOMAIN 10 (JAZ10) reporter to screen for mutants affected in the organ-specific activation of jasmonate (JA) signaling in Arabidopsis thaliana seedlings. Wounding one cotyledon activated the reporter in both aerial and root tissues, and this was either disrupted or restricted to certain organs in mutant alleles of core components of the JA pathway including COI1, OPR3, and JAR1. In contrast, three other mutants showed constitutive activation of the reporter in the roots and hypocotyls of unwounded seedlings. All three lines harbored mutations in Novel Interactor of JAZ (NINJA), which encodes part of a repressor complex that negatively regulates JA signaling. These ninja mutants displayed shorter roots mimicking JA-mediated growth inhibition, and this was due to reduced cell elongation. Remarkably, this phenotype and the constitutive JAZ10 expression were still observed in backgrounds lacking the ability to synthesize JA or the key transcriptional activator MYC2. Therefore, JA-like responses can be recapitulated in specific tissues without changing a plant’s ability to make or perceive JA, and MYC2 either has no role or is not the only derepressed transcription factor in ninja mutants. Our results show that the role of NINJA in the root is to repress JA signaling and allow normal cell elongation. Furthermore, the regulation of the JA pathway differs between roots and aerial tissues at all levels, from JA biosynthesis to transcriptional activation.
Publikation

Serra, P.; BANI HASHEMIAN, S. M.; PENSABENE-BELLAVIA, G.; Gago, S.; DURAN-VILA, N.; An artificial chimeric derivative of Citrus viroid V involves the terminal left domain in pathogenicity Mol. Plant Pathol. 10, 515-522, (2009) DOI: 10.1111/j.1364-3703.2009.00553.x

The recently described Citrus viroid V (CVd‐V) induces, in Etrog citron, mild stunting and very small necrotic lesions and cracks, sometimes filled with gum. As Etrog citron plants co‐infected with Citrus dwarfing viroid (CDVd) and CVd‐V show synergistic interactions, these host–viroid combinations provide a convenient model to identify the pathogenicity determinant(s). The biological effects of replacing limited portions of the rod‐like structure of CVd‐V with the corresponding portions of CDVd are reported. Chimeric constructs were synthesized using a novel polymerase chain reaction‐based approach, much more flexible than those based on restriction enzymes used in previous studies. Of the seven chimeras (Ch) tested, only one (Ch5) proved to be infectious. Plants infected with Ch5 showed no symptoms and, although this novel chimera was able to replicate to relatively high titres in singly infected plants, it was rapidly displaced by either CVd‐V or CDVd in doubly infected plants. The results demonstrate that direct interaction(s) between structural elements in the viroid RNA (in this case, the terminal left domain) and as yet unidentified host factors play an important role in modulating viroid pathogenicity. This is the first pathogenic determinant mapped in species of the genus Apscaviroid.
Publikation

Serra, P.; Gago, S.; Duran-Vila, N.; A single nucleotide change in Hop stunt viroid modulates citrus cachexia symptoms Virus Res. 138, 130-134, (2008) DOI: 10.1016/j.virusres.2008.08.003

Cachexia disease of citrus is caused by Hop stunt viroid (HSVd). In citrus, pathogenic and non-pathogenic strains differ by a “cachexia expression motif” of five to six nucleotides located in the variable domain of the proposed rod-like secondary structure. Here, site-directed mutants were generated to investigate if all these nucleotides were required for infectivity and/or symptom expression. Specifically an artificial cachexia inducing mutant M0 was generated by introducing the six nucleotides changes of the “cachexia expression motif” into a non-pathogenic sequence variant and M0 was used as a template to systematically restore some of the introduced changes. The resulting mutants in which specific changes introduced to generate M0, were restored presented a variety of responses: (i) M1, obtained by introducing two insertions forming a base-pair, was infectious but non-pathogenic; (ii) M2, obtained by introducing an insertion and restoring a substitution, presented low infectivity and the resulting progeny reverted to M0; (iii) M3, obtained by restoring a single substitution in the lower strand of the viroid secondary structure, was infectious but induced only mild cachexia symptoms; (iv) M4, obtained by restoring a single susbtitution in the upper strand of the viroid secondary structure, was non-infectious. These results confirm that the “cachexia expression motif” plays a major role in inciting cachexia symptoms, and that subtle changes within this motif affect symptom severity and may even suppress symptom expression.
IPB Mainnav Search