zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 18.

Publikation

Hamdi, I.; Elleuch, A.; Bessaies, N.; Grubb, C. D.; Fakhfakh, H.; First report of Citrus viroid V in North Africa J. Gen. Plant Pathol. 81, 87-91, (2015) DOI: 10.1007/s10327-014-0556-9

We tested citrus samples from Tunisia using reverse transcription-polymerase chain reaction (RT-PCR), and for the first time, Citrus viroid V (CVd-V) was reported in North Africa. Fourteen of 38 tested citrus trees were infected by CVd-V including the majority of varieties grown in Tunisia. Some RT-PCR results were also supported by biological indexing. After sequencing the RT-PCR products, three new CVd-V variants were identified, showing 80–91 % nucleotide sequence identity with those reported previously. Based on phylogenetic analysis using all CVd-V sequences in GenBank, two main CVd-V groups were identified. Furthermore, construction of a genetic network of the detected haplotypes using the same sequences shows a clear geographical structuring of Tunisian CVd-V variants.
Publikation

Rekik, I.; Drira, N.; Grubb, C. D.; Elleuch, A.; Molecular characterization and evolution studies of a SERK like gene transcriptionally induced during somatic embryogenesis in Phoenix Dactylifera L v Deglet Nour Genetika 47, 323-337, (2015) DOI: 10.2298/GENSR1501323R

A somatic embryogenesis receptor kinase like (SERKL) cDNA, designated PhSERKL, was isolated from date palm (Phoenix Dactylifera L) using RACE PCR. PhSERKL protein shared all the characteristic domains of the SERK family, including five leucine-rich repeats, one proline-rich region motif, a transmembrane domain, and kinase domains. Phylogenetic analyses using PHYLIP and Notung 2.7 programs suggest that the SERK proteins of some plant species resulted from relatively ancient duplication events. We predict an ancestor protein of monocots and dicots SERK using FASTML program. Somatic embryogenic cultures of date palm were established following transfer of callus cultures to medium containing 2, 4-dichlorophenoxyacetic acid. The role of PhSERKL gene during establishment of somatic embryogenesis in culture was investigated using quantitative real-time PCR. PhSERKL gene was highly expressed during embryogenic competence acquisition and globular embryo formation in culture. Overall, levels of expression of PhSERKL gene were lower in nonembryogenic tissues and organs than in embryogenic callus.
Publikation

Rekik, I.; Chaâbene, Z.; Grubb, C. D.; Drira, N.; Cheour, F.; Elleuch, A.; In silico characterization and Molecular modeling of double-strand break repair protein MRE11 from Phoenix dactylifera v deglet nour Theor. Biol. Med. Model. 12, 23, (2015) DOI: 10.1186/s12976-015-0013-2

BackgroundDNA double-strand breaks (DSBs) are highly cytotoxic and mutagenic. MRE11 plays an essential role in repairing DNA by cleaving broken ends through its 3′ to 5′ exonuclease and single-stranded DNA endonuclease activities.MethodsThe present study aimed to in silico characterization and molecular modeling of MRE11 from Phoenix dactylifera L cv deglet nour (DnMRE11) by various bioinformatic approaches. To identify DnMRE11 cDNA, assembled contigs from our cDNA libraries were analysed using the Blast2GO2.8 program.ResultsThe DnMRE11 protein length was 726 amino acids. The results of HUMMER show that DnMRE11 is formed by three domains: the N-terminal core domain containing the nuclease and capping domains, the C-terminal half containing the DNA binding and coiled coil region. The structure of DnMRE11 is predicted using the Swiss-Model server, which contains the nuclease and capping domains. The obtained model was verified with the structure validation programs such as ProSA and QMEAN servers for reliability. Ligand binding studies using COACH indicated the interaction of DnMRE11 protein with two Mn2+ ions and dAMP. The ConSurf server predicted that residues of the active site and Nbs binding site have high conservation scores between plant species.ConclusionsA model structure of DnMRE11 was constructed and validated with various bioinformatics programs which suggested the predicted model to be satisfactory. Further validation studies were conducted by COACH analysis for active site ligand prediction, and revealed the presence of six ligands binding sites and two ligands (2 Mn2+ and dAMP).
Publikation

Elleuch, A.; Chaâbene, Z.; Grubb, D. C.; Drira, N.; Mejdoub, H.; Khemakhem, B.; Morphological and biochemical behavior of fenugreek (Trigonella foenum-graecum) under copper stress Ecotoxicol. Environ. Saf. 98, 46-53, (2013) DOI: 10.1016/j.ecoenv.2013.09.028

The effects of copper on germination and growth of fenugreek (Trigonella foenum-graecum) was investigated separately using different concentrations of CuSO4. The germination percentage and radical length had different responses to cupric ions: the root growth increased with increasing copper concentration up to 1 mM and Cu2+ was inhibited thereafter. In contrast, the germination percentage was largely unaffected by concentrations of copper below 10 mM.The reduction in root growth may have been due to inhibition of hydrolytic enzymes such as amylase. Indeed, the average total amylolytic activity decreased from the first day of treatment with [Cu2+] greater than 1 mM. Furthermore, copper affected various plant growth parameters. Copper accumulation was markedly higher in roots as compared to shoots. While both showed a gradual decrease in growth, this was more pronounced in roots than in leaves and in stems. Excess copper induced an increase in the rate of hydrogen peroxide (H2O2) production and lipid peroxidation in all plant parts, indicating oxidative stress. This redox stress affected leaf chlorophyll and carotenoid content which decreased in response to augmented Cu levels. Additionally, the activities of proteins involved in reactive oxygen species (ROS) detoxification were affected. Cu stress elevated the ascorbate peroxidase (APX) activity more than two times at 10 mM CuSO4. In contrast, superoxide dismutase (SOD) and catalase (CAT) levels showed only minor variations, only at 1 mM Cu2+. Likewise, total phenol and flavonoid contents were strongly induced by low concentrations of copper, consistent with the role of these potent antioxidants in scavenging ROS such as H2O2, but returned to control levels or below at high [Cu2+]. Taken together, these results indicate a fundamental shift in the plant response to copper toxicity at low versus high concentrations.
Publikation

Flores, R.; Grubb, D.; Elleuch, A.; Nohales, M.-?.; Delgado, S.; Gago, S.; Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus: Variations on a theme RNA Biol. 8, 200-206, (2011) DOI: 10.4161/rna.8.2.14238

Viroids and viroid-like satellite RNAs from plants, and the human hepatitis delta virus (HDV) RNA share some properties that include small size, circularity and replication through a rolling-circle mechanism. Replication occurs in different cell compartments (nucleus, chloroplast and membrane-associated cytoplasmatic vesicles) and has three steps: RNA polymerization, cleavage and ligation. The first step generates oligomeric RNAs that result from the reiterative transcription of the circular templates of one or both polarities, and is catalyzed by either the RNA-dependent RNA polymerase of the helper virus on which viroid-like satellite RNAs are functionally dependent, or by host DNA-dependent RNA polymerases that, remarkably, viroids and HDV redirect to transcribe RNA templates. Cleavage is mediated by host enzymes in certain viroids and viroid-like satellite RNAs, while in others and in HDV is mediated by cis-acting ribozymes of three classes. Ligation appears to be catalyzed mainly by host enzymes. Replication most likely also involves many other non-catalytic proteins of host origin and, in HDV, the single virus-encoded protein.
Publikation

Wasternack, C.; Stenzel, I.; Hause, B.; Hause, G.; Kutter, C.; Maucher, H.; Neumerkel, J.; Feussner, I.; Miersch, O.; The wound response in tomato – Role of jasmonic acid J. Plant Physiol. 163, 297-306, (2006) DOI: 10.1016/j.jplph.2005.10.014

Plants respond to mechanical wounding or herbivore attack with a complex scenario of sequential, antagonistic or synergistic action of different signals leading to defense gene expression. Tomato plants were used as a model system since the peptide systemin and the lipid-derived jasmonic acid (JA) were recognized as essential signals in wound-induced gene expression. In this review recent data are discussed with emphasis on wound-signaling in tomato. The following aspects are covered: (i) systemin signaling, (ii) JA biosynthesis and action, (iii) orchestration of various signals such as JA, H2O2, NO, and salicylate, (iv) local and systemic response, and (v) amplification in wound signaling. The common occurrence of JA biosynthesis and systemin generation in the vascular bundles suggest JA as the systemic signal. Grafting experiments with JA-deficient, JA-insensitive and systemin-insensitive mutants strongly support this assumption.
Publikation

Sharma, V. K.; Monostori, T.; Hause, B.; Maucher, H.; Göbel, C.; Hornung, E.; Hänsch, R.; Bittner, F.; Wasternack, C.; Feussner, I.; Mendel, R. R.; Schulze, J.; Genetic transformation of barley to modify expression of a 13-lipoxygenase Acta Biol. Szeged. 49, 33-34, (2005)

Immature scutella of barley were transformed with cDNA coding for a 13-lipoxygenase of barley (LOX-100) via particle bombardment. Regenerated plants were tested by PAT-assay, Western-analysis and PCR-screening. Immunocytochemical assay of T0 plants showed expression of the LOX cDNA both in the chloroplasts and in the cytosol, depending on the presence of the chloroplast signal peptide sequences in the cDNA. A few transgenic plants containing higher amounts of LOX-derived products have been found. These are the candidates for further analysis concerning pathogen resistance.
Publikation

Schüler, G.; Mithöfer, A.; Baldwin, I. T.; BERGER, S.; Ebel, J.; Santos, J. G.; Herrmann, G.; Hölscher, D.; Kramell, R.; Kutchan, T. M.; Maucher, H.; Schneider, B.; Stenzel, I.; Wasternack, C.; Boland, W.; Coronalon: a powerful tool in plant stress physiology FEBS Lett. 563, 17-22, (2004) DOI: 10.1016/S0014-5793(04)00239-X

Coronalon, a synthetic 6‐ethyl indanoyl isoleucine conjugate, has been designed as a highly active mimic of octadecanoid phytohormones that are involved in insect and disease resistance. The spectrum of biological activities that is affected by coronalon was investigated in nine different plant systems specifically responding to jasmonates and/or 12‐oxo‐phytodienoic acid. In all bioassays analyzed, coronalon demonstrated a general strong activity at low micromolar concentrations. The results obtained showed the induction of (i) defense‐related secondary metabolite accumulation in both cell cultures and plant tissues, (ii) specific abiotic and biotic stress‐related gene expression, and (iii) root growth retardation. The general activity of coronalon in the induction of plant stress responses together with its simple and efficient synthesis suggests that this compound might serve as a valuable tool in the examination of various aspects in plant stress physiology. Moreover, coronalon might become employed in agriculture to elicit plant resistance against various aggressors.
Publikation

Miersch, O.; Weichert, H.; Stenzel, I.; Hause, B.; Maucher, H.; Feussner, I.; Wasternack, C.; Constitutive overexpression of allene oxide cyclase in tomato (Lycopersicon esculentum cv. Lukullus) elevates levels of some jasmonates and octadecanoids in flower organs but not in leaves Phytochemistry 65, 847-856, (2004) DOI: 10.1016/j.phytochem.2004.01.016

The allene oxide cyclase (AOC), an enzyme in jasmonate biosynthesis, occurs in vascular bundles and ovules of tomato flowers which exhibit a tissue-specific oxylipin signature (Plant J. 24, 113-126, 2000). Constitutive overexpression of the AOC did not led to altered levels of jasmonates in leaves, but these levels increased upon wounding or other stresses suggesting regulation of jasmonate biosynthesis by substrate availability (Plant J. 33, 577-589, 2003). Here, we show dramatic changes in levels of jasmonic acid (JA), of 12-oxo-phytodienoic acid (OPDA), their methyl esters (JAME, OPDAME), and of dinor-OPDA in most flower organs upon constitutive overexpression of AOC. Beside a dominant occurrence of OPDAME and JA in most flower organs, the ratio among the various compounds was altered differentially in the organs of transgenic flowers, e.g. OPDAME increased up to 53-fold in stamen, and JA increased about 51-fold in buds and 7.5-fold in sepals. The increase in jasmonates and octadecanoids was accompanied by decreased levels of free lipid hydro(per)oxy compounds. Except for 16:2, the AOC overexpression led to a significant increase in free but not esterified polyunsaturated fatty acids in all flower organs. The data suggest different regulation of JA biosynthesis in leaves and flowers of tomato.Constitutive overexpression of the AOC increases in all flower organs levels of some jasmonates and octadecanoids, alters the ratios among the compounds, decreases levels of free lipid hydro(per)oxy compounds and increases levels of free but not of esterified polyunsaturated fatty acids.
Publikation

Maucher, H.; Stenzel, I.; Miersch, O.; Stein, N.; Prasad, M.; Zierold, U.; Schweizer, P.; Dorer, C.; Hause, B.; Wasternack, C.; The allene oxide cyclase of barley (Hordeum vulgare L.)—cloning and organ-specific expression Phytochemistry 65, 801-811, (2004) DOI: 10.1016/j.phytochem.2004.01.009

The naturally occurring enantiomer of the various octadecanoids and jasmonates is established in a biosynthetic step catalyzed by the allene oxide cyclase (AOC). The AOC converts an allene oxide formed by an allene oxide synthase (AOS). Here, we show cloning and characterization of cDNAs encoding the AOC and a third AOS, respectively, in addition to the two AOSs previously published (Plant J. 21, 199–213, 2000). The ORF of the AOC-cDNA of 717 bp codes for a protein of 238 amino acid residues carrying a putative chloroplast target sequence. Overexpression without chloroplast target sequence revealed AOC activity. The AOC was found to be a single copy gene which mapped on chromosome 6H. AOC mRNA accumulation appeared in leaf segments upon treatment with various jasmonates, octadecanoids and ABA or during stress such as treatment with sorbitol or glucose solutions. Infection with powdery mildew activated AOC expression in susceptible and resistant lines of barley which correlated with PR1b expression. Among different tissues of barley seedlings, the scutellar node and leaf base accumulated AOC mRNA preferentially which correlated with accumulation of mRNAs for other biosynthetic enzymes (lipoxygenases, AOSs). AOC mRNA accumulation appeared also abundantly in parts of the root containing the tip and correlated with elevated levels of jasmonates. The data suggest a link of AOC expression and JA formation and support role of JA in stress responses and development of barley.Barley plants contain one allene oxide cyclase and three allene oxide synthases which are up-regulated during seedling development accompanied by elevated levels of jasmonate.
IPB Mainnav Search