zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 16.

Publikation

Gasperini, D.; Acosta, I. F.; Farmer, E. E.; Cotyledon Wounding of Arabidopsis Seedlings Bio Protoc. 6, e1712, (2016) DOI: 10.21769/BioProtoc.1712

Damage to plant organs through both biotic and abiotic injury is very common in nature. Arabidopsis thaliana 5-day-old (5-do) seedlings represent an excellent system in which to study plant responses to mechanical wounding, both at the site of the damage and in distal unharmed tissues. Seedlings of wild type, transgenic or mutant lines subjected to single or repetitive cotyledon wounding can be used to quantify morphological alterations (e.g., root length, Gasperini et al., 2015), analyze the dynamics of reporter genes in vivo (Larrieu et al., 2015; Gasperini et al., 2015), follow transcriptional changes by quantitative RT-PCR (Acosta et al., 2013; Gasperini et al., 2015) or examine additional aspects of the wound response with a plethora of downstream procedures. Here we illustrate how to rapidly and reliably wound cotyledons of young seedlings, and show the behavior of two promoters driving the expression of β-glucuronidase (GUS) in entire seedlings and in the primary root meristem, following single or repetitive cotyledon wounding respectively. We describe two procedures that can be easily adapted to specific experimental needs.
Publikation

Gasperini, D.; Chételat, A.; Acosta, I. F.; Goossens, J.; Pauwels, L.; Goossens, A.; Dreos, R.; Alfonso, E.; Farmer, E. E.; Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth PLOS Genet. 11, e1005300, (2015) DOI: 10.1371/journal.pgen.1005300

Physical damage can strongly affect plant growth, reducing the biomass of developing organs situated at a distance from wounds. These effects, previously studied in leaves, require the activation of jasmonate (JA) signalling. Using a novel assay involving repetitive cotyledon wounding in Arabidopsis seedlings, we uncovered a function of JA in suppressing cell division and elongation in roots. Regulatory JA signalling components were then manipulated to delineate their relative impacts on root growth. The new transcription factor mutant myc2-322B was isolated. In vitro transcription assays and whole-plant approaches revealed that myc2-322B is a dosage-dependent gain-of-function mutant that can amplify JA growth responses. Moreover, myc2-322B displayed extreme hypersensitivity to JA that totally suppressed root elongation. The mutation weakly reduced root growth in undamaged plants but, when the upstream negative regulator NINJA was genetically removed, myc2-322B powerfully repressed root growth through its effects on cell division and cell elongation. Furthermore, in a JA-deficient mutant background, ninja1 myc2-322B still repressed root elongation, indicating that it is possible to generate JA-responses in the absence of JA. We show that NINJA forms a broadly expressed regulatory layer that is required to inhibit JA signalling in the apex of roots grown under basal conditions. By contrast, MYC2, MYC3 and MYC4 displayed cell layer-specific localisations and MYC3 and MYC4 were expressed in mutually exclusive regions. In nature, growing roots are likely subjected to constant mechanical stress during soil penetration that could lead to JA production and subsequent detrimental effects on growth. Our data reveal how distinct negative regulatory layers, including both NINJA-dependent and -independent mechanisms, restrain JA responses to allow normal root growth. Mechanistic insights from this work underline the importance of mapping JA signalling components to specific cell types in order to understand and potentially engineer the growth reduction that follows physical damage.
Publikation

Gasperini, D.; Chauvin, A.; Acosta, I. F.; Kurenda, A.; Stolz, S.; Chételat, A.; Wolfender, J.-L.; Farmer, E. E.; Axial and Radial Oxylipin Transport Plant Physiol. 169, 2244-2254, (2015) DOI: 10.1104/pp.15.01104

Jasmonates are oxygenated lipids (oxylipins) that control defense gene expression in response to cell damage in plants. How mobile are these potent mediators within tissues? Exploiting a series of 13-lipoxygenase (13-lox) mutants in Arabidopsis (Arabidopsis thaliana) that displays impaired jasmonic acid (JA) synthesis in specific cell types and using JA-inducible reporters, we mapped the extent of the transport of endogenous jasmonates across the plant vegetative growth phase. In seedlings, we found that jasmonate (or JA precursors) could translocate axially from wounded shoots to unwounded roots in a LOX2-dependent manner. Grafting experiments with the wild type and JA-deficient mutants confirmed shoot-to-root oxylipin transport. Next, we used rosettes to investigate radial cell-to-cell transport of jasmonates. After finding that the LOX6 protein localized to xylem contact cells was not wound inducible, we used the lox234 triple mutant to genetically isolate LOX6 as the only JA precursor-producing LOX in the plant. When a leaf of this mutant was wounded, the JA reporter gene was expressed in distal leaves. Leaf sectioning showed that JA reporter expression extended from contact cells throughout the vascular bundle and into extravascular cells, revealing a radial movement of jasmonates. Our results add a crucial element to a growing picture of how the distal wound response is regulated in rosettes, showing that both axial (shoot-to-root) and radial (cell-to-cell) transport of oxylipins plays a major role in the wound response. The strategies developed herein provide unique tools with which to identify intercellular jasmonate transport routes.
Publikation

Farmer, E. E.; Gasperini, D.; Acosta, I. F.; The squeeze cell hypothesis for the activation of jasmonate synthesis in response to wounding New Phytol. 204, 282-288, (2014) DOI: 10.1111/nph.12897

Jasmonates are lipid mediators that control defence gene expression in response to wounding and other environmental stresses. These small molecules can accumulate at distances up to several cm from sites of damage and this is likely to involve cell‐to‐cell jasmonate transport. Also, and independently of jasmonate synthesis, transport and perception, different long‐distance wound signals that stimulate distal jasmonate synthesis are propagated at apparent speeds of several cm min–1 to tissues distal to wounds in a mechanism that involves clade 3 GLUTAMATE RECEPTOR‐LIKE (GLR) genes. A search for jasmonate synthesis enzymes that might decode these signals revealed LOX6, a lipoxygenase that is necessary for much of the rapid accumulation of jasmonic acid at sites distal to wounds. Intriguingly, the LOX6 promoter is expressed in a distinct niche of cells that are adjacent to mature xylem vessels, a location that would make these contact cells sensitive to the release of xylem water column tension upon wounding. We propose a model in which rapid axial changes in xylem hydrostatic pressure caused by wounding travel through the vasculature and lead to slower, radially dispersed pressure changes that act in a clade 3 GLR‐dependent mechanism to promote distal jasmonate synthesis.
Publikation

Acosta, I. F.; Gasperini, D.; Chételat, A.; Stolz, S.; Santuari, L.; Farmer, E. E.; Role of NINJA in root jasmonate signaling Proc. Natl. Acad. Sci. U.S.A. 110, 15473-15478, (2013) DOI: 10.1073/pnas.1307910110

Wound responses in plants have to be coordinated between organs so that locally reduced growth in a wounded tissue is balanced by appropriate growth elsewhere in the body. We used a JASMONATE ZIM DOMAIN 10 (JAZ10) reporter to screen for mutants affected in the organ-specific activation of jasmonate (JA) signaling in Arabidopsis thaliana seedlings. Wounding one cotyledon activated the reporter in both aerial and root tissues, and this was either disrupted or restricted to certain organs in mutant alleles of core components of the JA pathway including COI1, OPR3, and JAR1. In contrast, three other mutants showed constitutive activation of the reporter in the roots and hypocotyls of unwounded seedlings. All three lines harbored mutations in Novel Interactor of JAZ (NINJA), which encodes part of a repressor complex that negatively regulates JA signaling. These ninja mutants displayed shorter roots mimicking JA-mediated growth inhibition, and this was due to reduced cell elongation. Remarkably, this phenotype and the constitutive JAZ10 expression were still observed in backgrounds lacking the ability to synthesize JA or the key transcriptional activator MYC2. Therefore, JA-like responses can be recapitulated in specific tissues without changing a plant’s ability to make or perceive JA, and MYC2 either has no role or is not the only derepressed transcription factor in ninja mutants. Our results show that the role of NINJA in the root is to repress JA signaling and allow normal cell elongation. Furthermore, the regulation of the JA pathway differs between roots and aerial tissues at all levels, from JA biosynthesis to transcriptional activation.
Publikation

Abel, S.; Theologis, A.; Odyssey of Auxin Cold Spring Harb. Perspect. Biol. 2, a004572, (2010) DOI: 10.1101/cshperspect.a004572

The history of plant biology is inexorably intertwined with the conception and discovery of auxin, followed by the many decades of research to comprehend its action during growth and development. Growth responses to auxin are complex and require the coordination of auxin production, transport, and perception. In this overview of past auxin research, we limit our discourse to the mechanism of auxin action. We attempt to trace the almost epic voyage from the birth of the hormonal concept in plants to the recent crystallographic studies that resolved the TIR1-auxin receptor complex, the first structural model of a plant hormone receptor. The century-long endeavor is a beautiful illustration of the power of scientific reasoning and human intuition, but it also brings to light the fact that decisive progress is made when new technologies emerge and disciplines unite.
Publikation

Sharma, V. K.; Monostori, T.; Göbel, C.; Hänsch, R.; Bittner, F.; Wasternack, C.; Feussner, I.; Mendel, R. R.; Hause, B.; Schulze, J.; Transgenic barley plants overexpressing a 13-lipoxygenase to modify oxylipin signature Phytochemistry 67, 264-276, (2006) DOI: 10.1016/j.phytochem.2005.11.009

Three chimeric gene constructs were designed comprising the full length cDNA of a lipoxygenase (LOX) from barley (LOX2:Hv:1) including its chloroplast targeting sequence (cTP) under control of either (1) CaMV35S- or (2) polyubiquitin-1-promoter, whereas the third plasmid contains 35S promoter and the cDNA without cTP. Transgenic barley plants overexpressing LOX2:Hv:1 were generated by biolistics of scutella from immature embryos. Transformation frequency for 35S::LOX with or without cTP was in a range known for barley particle bombardment, whereas for Ubi::cTP-LOX no transgenic plants were detected. In general, a high number of green plantlets selected on bialaphos became yellow and finally died either in vitro or after potting. All transgenic plants obtained were phenotypically indistinguishable from wild type plants and all of them set seeds. The corresponding protein (LOX-100) in transgenic T0 and T1 plants accumulated constitutively to similar levels as in the jasmonic acid methyl ester (JAME)-treated wild type plants. Moreover, LOX-100 was clearly detectable immunocytochemically within the chloroplasts of untreated T0 plants containing the LOX-100-cDNA with the chloroplast target sequence. In contrast, an exclusive localization of LOX-100 in the cytoplasm was detectable when the target sequence was removed. In comparison to sorbitol-treated wild type leaves, analysis of oxylipin profiles in T2 progenies showed higher levels of jasmonic acid (JA) for those lines that displayed elevated levels of LOX-100 in the chloroplasts and for those lines that harboured LOX-100 in the cytoplasm, respectively. The studies demonstrate for the first time the constitutive overexpression of a cDNA coding for a 13-LOX in a monocotyledonous species and indicate a link between the occurrence of LOX-100 and senescence.
Publikation

Sharma, V. K.; Monostori, T.; Hause, B.; Maucher, H.; Göbel, C.; Hornung, E.; Hänsch, R.; Bittner, F.; Wasternack, C.; Feussner, I.; Mendel, R. R.; Schulze, J.; Genetic transformation of barley to modify expression of a 13-lipoxygenase Acta Biol. Szeged. 49, 33-34, (2005)

Immature scutella of barley were transformed with cDNA coding for a 13-lipoxygenase of barley (LOX-100) via particle bombardment. Regenerated plants were tested by PAT-assay, Western-analysis and PCR-screening. Immunocytochemical assay of T0 plants showed expression of the LOX cDNA both in the chloroplasts and in the cytosol, depending on the presence of the chloroplast signal peptide sequences in the cDNA. A few transgenic plants containing higher amounts of LOX-derived products have been found. These are the candidates for further analysis concerning pathogen resistance.
Publikation

Morgan, K. E.; Zarembinski, T. I.; Theologis, A.; Abel, S.; Biochemical characterization of recombinant polypeptides corresponding to the predicted βαα fold in Aux/IAA proteins FEBS Lett. 454, 283-287, (1999) DOI: 10.1016/S0014-5793(99)00819-4

The plant hormone indoleacetic acid (IAA or auxin) transcriptionally activates a select set of early genes. The Auxl IAA class of early auxin-responsive genes encodes a large family of short-lived, nuclear proteins. Aux/IAA polypeptides homo-and heterodimerize, and interact with auxin-response transcription factors (ARFs) via C-terminal regions conserved in both protein families. This shared region contains a predicted βαα motif similar to the prokaryotic β-Ribbon DNA binding domain, which mediates both protein dimerization and DNA recognition. Here, we show by circular dichroism spectroscopy and by chemical cross-linking experiments that recombinant peptides corresponding to the predicted βαα region of three Aux/IAA proteins from Arabidopsis thaliana contain substantial α-helical secondary structure and undergo homo- and heterotypic interactions in vitro. Our results indicate a similar biochemical function of the plant βαα domain and suggest that the βαα fold plays an important role in mediating combinatorial interactions of Aux/IAA and ARF proteins to specifically regulate secondary gene expression in response to auxin.
Publikation

Wong, L. M.; Abel, S.; Shen, N.; de la Foata, M.; Mall, Y.; Theologis, A.; Differential activation of the primary auxin response genes, PS-IAA4/5 and PS-IAA6, during early plant development Plant J. 9, 587-599, (1996) DOI: 10.1046/j.1365-313X.1996.9050587.x

The plant growth hormone auxin typified by indoleacetic acid (IAA) transcriptionally activates early genes in pea, PS‐IAA4/5 and PS‐IAA6 , that are members of a multigene family encoding short‐lived nuclear proteins. To gain first insight into the biological role of PS‐IAA4/5 and PSIAA6 , promoter‐β‐glucuronidase (GUS) gene fusions were constructed and their expression during early development of transgenic tobacco seedlings was examined. The comparative analysis reveals spatial and temporal expression patterns of both genes that correlate with cells, tissues, and developmental processes known to be affected by auxin. GUS activity in seedlings of both transgenic lines is located in the root meristem, sites of lateral root initiation and in hypocotyls undergoing rapid elongation. In addition, mutually exclusive cell‐specific expression is evident. For instance, PS‐IAA4/5—GUS but not PS‐IAA6—GUS is expressed in root vascular tissue and in guard cells, whereas only PS‐IAA6—GUS activity is detectable in glandular trichomes and redistributes to the elongating side of the hypocotyl upon gravitropic stimulation. Expression of PS‐IAA4/5 and PS‐IAA6 in elongating, dividing, and differentiating cell types indicates multiple functions during development. The common and yet distinct activity patterns of both genes suggest a combinatorial code of spatio‐temporal co‐expression of the various PS‐IAA4/ 5‐like gene family members in plant development that may mediate cell‐specific responses to auxin.
IPB Mainnav Search