zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr sort ascending Typ der Publikation

Zeige Ergebnisse 21 bis 25 von 25.

Publikationen in Druck

Poeschl, Y.; Möller, B.; Müller, L.; Bürstenbinder, K. User-friendly assessment of pavement cell shape features with PaCeQuant: Novel functions and tools Methods Cell Biol (2020) DOI: 10.1016/bs.mcb.2020.04.010

Leaf epidermis pavement cells develop complex jigsaw puzzle-like shapes in many plant species, including the model plant Arabidopsis thaliana. Due to their complex morphology, pavement cells have become a popular model system to study shape formation and coordination of growth in the context of mechanically coupled cells at the tissue level. To facilitate robust assessment and analysis of pavement cell shape characteristics in a high-throughput fashion, we have developed PaCeQuant and a collection of supplemental tools. The ImageJ-based MiToBo plugin PaCeQuant supports fully automatic segmentation of cell contours from microscopy images and the extraction of 28 shape features for each detected cell. These features now also include the Largest Empty Circle criterion as a proxy for mechanical stress. In addition, PaCeQuant provides a set of eight features for individual lobes, including the categorization as type I and type II lobes at two- and three-cell junctions, respectively. The segmentation and feature extraction results of PaCeQuant depend on the quality of input images. To allow for corrections in case of local segmentation errors, the LabelImageEditor is provided for user-friendly manual postprocessing of segmentation results. For statistical analysis and visualization, PaCeQuant is supplemented with the R package PaCeQuantAna, which provides statistical analysis functions and supports the generation of publication-ready plots in ready-to-use R workflows. In addition, we recently released the FeatureColorMapper tool which overlays feature values over cell regions for user-friendly visual exploration of selected features in a set of analyzed cells.
Preprints

Trenner, J.; Poeschl, Y.; Grau, J.; Gogol-Döring, A.; Quint, M.; Delker, C. Auxin-induced expression divergence between Arabidopsis species likely originates within the TIR1/AFB-AUX/IAA-ARF module bioRxiv (2016) DOI: 10.1101/038422

Auxin is an essential regulator of plant growth and development and auxin signaling components are conserved among land plants. Yet, a remarkable degree of natural variation in physiological and transcriptional auxin responses has been described among Arabidopsis thaliana accessions. As intra-species comparisons offer only limited genetic variation, we here inspect the variation of auxin responses between A. thaliana and A. lyrata. This approach allowed the identification of conserved auxin response genes including novel genes with potential relevance for auxin biology. Furthermore, promoter divergences were analyzed for putative sources of variation. De novo motif discovery identified novel and variants of known elements with potential relevance for auxin responses, emphasizing the complex, and yet elusive, code of element combinations accounting for the diversity in transcriptional auxin responses. Furthermore, network analysis revealed correlations of inter-species differences in the expression of AUX/IAA gene clusters and classic auxin-related genes. We conclude that variation in general transcriptional and physiological auxin responses may originate substantially from functional or transcriptional variations in the TIR1/AFB, AUX/IAA, and ARF signaling network. In that respect, AUX/IAA gene expression divergence potentially reflects differences in the manner in which different species transduce identical auxin signals into gene expression responses.
Preprints

Drost, H.-J.; Gabel, A.; Domazet-Lošo, T.; Quint, M.; Grosse, I. Capturing Evolutionary Signatures in Transcriptomes with myTAI bioRxiv (2016) DOI: 10.1101/051565

Combining transcriptome data of biological processes or response to stimuli with evolutionary information such as the phylogenetic conservation of genes or their sequence divergence rates enables the investigation of evolutionary constraints on these processes or responses. Such phylotranscriptomic analyses recently unraveled that mid-developmental transcriptomes of fly, fish, and cress were dominated by evolutionarily conserved genes and genes under negative selection and thus recapitulated the developmental hourglass on the transcriptomic level. Here, we present a protocol for performing phylotranscriptomic analyses on any biological process of interest. When applying this protocol, users are capable of detecting different evolutionary constraints acting on different stages of the biological process of interest in any species. For each step of the protocol, modular and easy-to-use open-source software tools are provided, which enable a broad range of scientists to apply phylotranscriptomic analyses to a wide spectrum of biological questions.
Preprints

Ibañez, C.; Poeschl, Y.; Peterson, T.; Bellstädt, J.; Denk, K.; Gogol-Döring, A.; Quint, M.; Delker, C. Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana bioRxiv (2017) DOI: 10.1101/017285

Background: Global increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best. Results: Here, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown in four different temperatures ranging from 16 to 28 °C. We used Q 10 , GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions. Conclusion: Genotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.
Preprints

Drost, H.-G.; Bellstädt, J.; Ó'Maoiléidigh, D. S.; Silva, A. T.; Gabel, A.; Weinholdt, C.; Ryan, P. T.; Dekkers, B. J. W.; Bentsink, L.; Hilhorst, H. W. M.; Ligterink, W.; Wellmer, F.; Grosse, I.; Quint, M. Post-embryonic hourglass patterns mark ontogenetic transitions in plant development bioRxiv (2015) DOI: 10.1101/035527

The historic developmental hourglass concept depicts the convergence of animal embryos to a common form during the phylotypic period. Recently, it has been shown that a transcriptomic hourglass is associated with this morphological pattern, consistent with the idea of underlying selective constraints due to intense molecular interactions during body plan establishment. Although plants do not exhibit a morphological hourglass during embryogenesis, a transcriptomic hourglass has nevertheless been identified in the model plant Arabidopsis thaliana. Here, we investigated whether plant hourglass patterns are also found post-embryonically. We found that the two main phase changes during the life cycle of Arabidopsis, from embryonic to vegetative and from vegetative to reproductive development, are associated with transcriptomic hourglass patterns. In contrast, flower development, a process dominated by organ formation, is not. This suggests that plant hourglass patterns are decoupled from organogenesis and body plan establishment. Instead, they may reflect general transitions through organizational checkpoints.
IPB Mainnav Search