zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 4 von 4.

Publikation

Feussner, I.; Balkenhohl, T. J.; Porzel, A.; Kühn, H.; Wasternack, C.; Structural Elucidation of Oxygenated Storage Lipids in Cucumber Cotyledons J. Biol. Chem. 272, 21635-21641, (1997) DOI: 10.1074/jbc.272.34.21635

At early stages of germination, a special lipoxygenase is expressed in cotyledons of cucumber and several other plants. This enzyme is localized at the lipid storage organelles and oxygenates their storage triacylglycerols. We have isolated this lipid body lipoxygenase from cucumber seedlings and found that it is capable of oxygenating in vitro di- and trilinolein to the corresponding mono-, di-, and trihydroperoxy derivatives. To investigate the in vivo activity of this enzyme during germination, lipid bodies were isolated from cucumber seedlings at different stages of germination, and the triacylglycerols were analyzed for oxygenated derivatives by a combination of high pressure liquid chromatography, gas chromatography/mass spectrometry, and nuclear magnetic resonance spectroscopy. We identified as major oxygenation products triacylglycerols that contained one, two, or three 13S-hydroperoxy-9(Z),11(E)-octadecadienoic acid residues. During germination, the amount of oxygenated lipids increased strongly, reaching a maximum after 72 h and declining afterward. The highly specific pattern of hydroperoxy lipids formed suggested the involvement of the lipid body lipoxygenase in their biosynthesis.These data suggest that this lipoxygenase may play an important role during the germination process of cucumber and other plants and support our previous hypothesis that the specific oxygenation of the storage lipids may initiate their mobilization as a carbon and energy source for the growing seedling.
Publikation

Feussner, I.; Porzel, A.; Wasternack, C.; Kühn, H.; Quantitative Analyse von Lipoxygenase-Metaboliten in Lipiden durch NMR-Spektroskopie BIOspektrum 3, 54-58, (1997)

0
Publikation

Feussner, I.; Kühn, H.; Wasternack, C.; Do specific linoleate 13-lipoxygenases initiate β-oxidation? FEBS Lett. 406, 1-5, (1997) DOI: 10.1016/S0014-5793(97)00218-4

The germination process of oilseed plants is characterized by a mobilization of the storage lipids which constitute the major carbon source for the growing seedling. Despite the physiological importance of the lipid mobilization, the mechanism of this process is not well understood. Recently, it was found that a specific linoleate 13-lipoxygenase is induced during the stage of lipid mobilization in various oilseed plants and that this enzyme is translocated to the membranes of the lipid storage organelles, the so called lipid bodies. Lipoxygenase expression was paralleled by the occurrence of enantiospecific hydro(pero)xy polyenoic fatty acid derivatives in the storage lipids suggesting the in vivo action of the enzyme. Furthermore, it was reported that oxygenated polyenoic fatty acids, in particular as 13(S)-hydro(pero)xy-9(Z),11(E)-octadecanoic acid [13(S)-H(P)ODE], are cleaved preferentially from the storage lipids when compared with their non-oxygenated linoleate residues. These findings may suggest that 13(S)-H(P)ODE may constitute the endogenous substrate for β-oxidation during lipid mobilization of oilseed plants.
Bücher und Buchkapitel

Feussner, I.; Kühn, H.; Wasternack, C.; Do Lipoxygenases Initiate β-Oxidation? 250-252, (1997) DOI: 10.1007/978-94-017-2662-7_79

The etiolated germination process of oilseed plants is characterized by the mobilization of storage lipids which serve as a major carbon source for the seedlings growth. During this stage the lipid storing organelles, the lipid bodies, are degraded and a new set of proteins, including a specific form of lipoxygenase (LOX), is detectable at their membranes in different plants [1,2]. LOXs are widely distributed in plants and animals and catalyze the regio- and stereo-specific oxygenation of polyunsaturated fatty acids [3]. The enzymatic transformations of the resulting fatty acid hydroperoxides have been extensively studied [4]. Three well characterized enzymes, a lyase, an allene oxide synthase, and a peroxygenase, were shown to degrade hydroperoxides into compounds of physiological importance, such as odors, oxylipins, and jasmonates. We have recently reported a new LOX reaction in plants where a specific LOX, the lipid body LOX, metabolizes esterified fatty acids. This reaction resulted in the formation of 13(S)-hydroxy-linoleic acid (13-HODE) and lead us to propose an additional branch of the LOX pathway: the reductase pathway. Besides a specific LOX form we suggest two additional enzyme activities, a lipid hydroperoxide reductase and a lipid hydroxide-specific lipase which lead to the formation of 13-HODE. 13-HODE might be the endogenous substrate for β-oxidation in the glyoxysomes during germination of oilseeds containing high amounts of polyunsaturated fatty acids.
IPB Mainnav Search