zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 20.

Publikation

Halim, V. A.; Altmann, S.; Ellinger, D.; Eschen-Lippold, L.; Miersch, O.; Scheel, D.; Rosahl, S.; PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid Plant J. 57, 230-242, (2009) DOI: 10.1111/j.1365-313X.2008.03688.x

To elucidate the molecular mechanisms underlying pathogen‐associated molecular pattern (PAMP)‐induced defense responses in potato (Solanum tuberosum ), the role of the signaling compounds salicylic acid (SA) and jasmonic acid (JA) was analyzed. Pep‐13, a PAMP from Phytophthora , induces the accumulation of SA, JA and hydrogen peroxide, as well as the activation of defense genes and hypersensitive‐like cell death. We have previously shown that SA is required for Pep‐13‐induced defense responses. To assess the importance of JA, RNA interference constructs targeted at the JA biosynthetic genes, allene oxide cyclase and 12‐oxophytodienoic acid reductase, were expressed in transgenic potato plants. In addition, expression of the F‐box protein COI1 was reduced by RNA interference. Plants expressing the RNA interference constructs failed to accumulate the respective transcripts in response to wounding or Pep‐13 treatment, neither did they contain significant amounts of JA after elicitation. In response to infiltration of Pep‐13, the transgenic plants exhibited a highly reduced accumulation of reactive oxygen species as well as reduced hypersensitive cell death. The ability of the JA‐deficient plants to accumulate SA suggests that SA accumulation is independent or upstream of JA accumulation. These data show that PAMP responses in potato require both SA and JA and that, in contrast to Arabidopsis, these compounds act in the same signal transduction pathway. Despite their inability to fully respond to PAMP treatment, the transgenic RNA interference plants are not altered in their basal defense against Phytophthora infestans .
Publikation

Gago, S.; Elena, S. F.; Flores, R.; Sanjuan, R.; Extremely High Mutation Rate of a Hammerhead Viroid Science 323, 1308-1308, (2009) DOI: 10.1126/science.1169202

The mutation rates of viroids, plant pathogens with minimal non-protein-coding RNA genomes, are unknown. Their replication is mediated by host RNA polymerases and, in some cases, by hammerhead ribozymes, small self-cleaving motifs embedded in the viroid. By using the principle that the population frequency of nonviable genotypes equals the mutation rate, we screened for changes that inactivated the hammerheads of Chrysanthemum chlorotic mottle viroid. We obtained a mutation rate of 1/400 per site, the highest reported for any biological entity. Such error-prone replication can only be tolerated by extremely simple genomes such as those of viroids and, presumably, the primitive replicons of the RNA world. Our results suggest that the emergence of replication fidelity was critical for the evolution of complexity in the early history of life.
Publikation

Flores, R.; Gas, M.-E.; Molina-Serrano, D.; Nohales, M.-?.; Carbonell, A.; Gago, S.; De la Peña, M.; Daròs, J.-A.; Viroid Replication: Rolling-Circles, Enzymes and Ribozymes Viruses 1, 317-334, (2009) DOI: 10.3390/v1020317

Viroids, due to their small size and lack of protein-coding capacity, must rely essentially on their hosts for replication. Intriguingly, viroids have evolved the ability to replicate in two cellular organella, the nucleus (family Pospiviroidae) and the chloroplast (family Avsunviroidae). Viroid replication proceeds through an RNA-based rolling-circle mechanism with three steps that, with some variations, operate in both polarity strands: i) synthesis of longer-than-unit strands catalyzed by either the nuclear RNA polymerase II or a nuclear-encoded chloroplastic RNA polymerase, in both instances redirected to transcribe RNA templates, ii) cleavage to unit-length, which in the family Avsunviroidae is mediated by hammerhead ribozymes embedded in both polarity strands, while in the family Pospiviroidae the oligomeric RNAs provide the proper conformation but not the catalytic activity, and iii) circularization. The host RNA polymerases, most likely assisted by additional host proteins, start transcription from specific sites, thus implying the existence of viroid promoters. Cleavage and ligation in the family Pospiviroidae is probably catalyzed by an RNase III-like enzyme and an RNA ligase able to circularize the resulting 5’ and 3’ termini. Whether a chloroplastic RNA ligase mediates circularization in the family Avsunviroidae, or this reaction is autocatalytic, remains an open issue.
Publikation

Dufour, D.; De la Peña, M.; Gago, S.; Flores, R.; Gallego, J.; Structure–function analysis of the ribozymes of chrysanthemum chlorotic mottle viroid: a loop–loop interaction motif conserved in most natural hammerheads Nucleic Acids Res. 37, 368-381, (2009) DOI: 10.1093/nar/gkn918

Loop–loop tertiary interactions play a key role in the folding and catalytic activity of natural hammerhead ribozymes. Using a combination of NMR spectroscopy, site-directed mutagenesis and kinetic and infectivity analyses, we have examined the structure and function of loops 1 and 2 of the (+) and (–) hammerheads of chrysanthemum chlorotic mottle viroid RNA. In both hammerheads, loop 1 is a heptanucleotide hairpin loop containing an exposed U at its 5′ side and an extrahelical U at its 3′-side critical for the catalytic activity of the ribozyme in vitro and for viroid infectivity in vivo , whereas loop 2 has a key opened A at its 3′-side. These structural features promote a specific loop–loop interaction motif across the major groove. The essential features of this tertiary structure element, base pairing between the 5′ U of loop 1 and the 3′ A of loop 2, and interaction of the extrahelical pyrimidine of loop 1 with loop 2, are likely shared by a significant fraction of natural hammerheads.
Publikation

Clarke, S. M.; Cristescu, S. M.; Miersch, O.; Harren, F. J. M.; Wasternack, C.; Mur, L. A. J.; Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana New Phytol. 182, 175-187, (2009) DOI: 10.1111/j.1469-8137.2008.02735.x

The cpr5‐1 Arabidopsis thaliana mutant exhibits constitutive activation of salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) signalling pathways and displays enhanced tolerance of heat stress (HS).cpr5‐1 crossed with jar1‐1 (a JA‐amino acid synthetase) was compromised in basal thermotolerance, as were the mutants opr3 (mutated in OPDA reductase3) and coi1‐1 (affected in an E3 ubiquitin ligase F‐box; a key JA‐signalling component). In addition, heating wild‐type Arabidopsis led to the accumulation of a range of jasmonates: JA, 12‐oxophytodienoic acid (OPDA) and a JA‐isoleucine (JA‐Ile) conjugate. Exogenous application of methyl jasmonate protected wild‐type Arabidopsis from HS.Ethylene was rapidly produced during HS, with levels being modulated by both JA and SA. By contrast, the ethylene mutant ein2‐1 conferred greater thermotolerance.These data suggest that JA acts with SA, conferring basal thermotolerance while ET may act to promote cell death.
Publikation

Ziegler, J.; Brandt, W.; Geißler, R.; Facchini, P. J.; Removal of Substrate Inhibition and Increase in Maximal Velocity in the Short Chain Dehydrogenase/Reductase Salutaridine Reductase Involved in Morphine Biosynthesis J. Biol. Chem. 284, 26758-26767, (2009) DOI: 10.1074/jbc.M109.030957

Salutaridine reductase (SalR, EC 1.1.1.248) catalyzes the stereospecific reduction of salutaridine to 7(S)-salutaridinol in the biosynthesis of morphine. It belongs to a new, plant-specific class of short-chain dehydrogenases, which are characterized by their monomeric nature and increased length compared with related enzymes. Homology modeling and substrate docking suggested that additional amino acids form a novel α-helical element, which is involved in substrate binding. Site-directed mutagenesis and subsequent studies on enzyme kinetics revealed the importance of three residues in this element for substrate binding. Further replacement of eight additional residues led to the characterization of the entire substrate binding pocket. In addition, a specific role in salutaridine binding by either hydrogen bond formation or hydrophobic interactions was assigned to each amino acid. Substrate docking also revealed an alternative mode for salutaridine binding, which could explain the strong substrate inhibition of SalR. An alternate arrangement of salutaridine in the enzyme was corroborated by the effect of various amino acid substitutions on substrate inhibition. In most cases, the complete removal of substrate inhibition was accompanied by a substantial loss in enzyme activity. However, some mutations greatly reduced substrate inhibition while maintaining or even increasing the maximal velocity. Based on these results, a double mutant of SalR was created that exhibited the complete absence of substrate inhibition and higher activity compared with wild-type SalR.
Publikation

Wasternack, C.; Hause, B.; Emerging complexity: jasmonate-induced volatiles affect parasitoid choice J. Exp. Bot. 60, 2451-2453, (2009) DOI: 10.1093/jxb/erp197

0
Publikation

Vandenborre, G.; Miersch, O.; Hause, B.; Smagghe, G.; Wasternack, C.; Van Damme, E. J.; Spodoptera littoralis-Induced Lectin Expression in Tobacco Plant Cell Physiol. 50, 1142-1155, (2009) DOI: 10.1093/pcp/pcp065

The induced defense response in plants towards herbivores is mainly regulated by jasmonates and leads to the accumulation of so-called jasmonate-induced proteins. Recently, a jasmonate (JA) inducible lectin called Nicotiana tabacum agglutinin or NICTABA was discovered in tobacco (N. tabacum cv Samsun) leaves. Tobacco plants also accumulate the lectin after insect attack by caterpillars. To study the functional role of NICTABA, the accumulation of the JA precursor 12-oxophytodienoic acid (OPDA), JA as well as different JA metabolites were analyzed in tobacco leaves after herbivory by larvae of the cotton leafworm (Spodoptera littoralis) and correlated with NICTABA accumulation. It was shown that OPDA, JA as well as its methyl ester can trigger NICTABA accumulation. However, hydroxylation of JA and its subsequent sulfation and glucosylation results in inactive compounds that have lost the capacity to induce NICTABA gene expression. The expression profile of NICTABA after caterpillar feeding was recorded in local as well as in systemic leaves, and compared to the expression of several genes encoding defense proteins, and genes encoding a tobacco systemin and the allene oxide cyclase, an enzyme in JA biosynthesis. Furthermore, the accumulation of NICTABA was quanti-fied after S. littoralis herbivory and immunofluorescence microscopy was used to study the localization of NICTABA in the tobacco leaf.
Publikation

Ticconi, C. A.; Lucero, R. D.; Sakhonwasee, S.; Adamson, A. W.; Creff, A.; Nussaume, L.; Desnos, T.; Abel, S.; ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability Proc. Natl. Acad. Sci. U.S.A. 106, 14174-14179, (2009) DOI: 10.1073/pnas.0901778106

Inadequate availability of inorganic phosphate (Pi) in the rhizosphere is a common challenge to plants, which activate metabolic and developmental responses to maximize Pi acquisition. The sensory mechanisms that monitor environmental Pi status and regulate root growth via altered meristem activity are unknown. Here, we show that phosphate deficiency response 2 (PDR2) encodes the single P5-type ATPase of Arabidopsis thaliana. PDR2 functions in the endoplasmic reticulum (ER) and is required for proper expression of scarecrow (SCR), a key regulator of root patterning, and for stem-cell maintenance in Pi-deprived roots. We further show that the multicopper oxidase encoded by low phosphate root 1 (LPR1) is targeted to the ER and that LPR1 and PDR2 interact genetically. Because the expression domains of both genes overlap in the stem-cell niche and distal root meristem, we propose that PDR2 and LPR1 function together in an ER-resident pathway that adjusts root meristem activity to external Pi. Our data indicate that the Pi-conditional root phenotype of pdr2 is not caused by increased Fe availability in low Pi; however, Fe homeostasis modifies the developmental response of root meristems to Pi availability.
IPB Mainnav Search