zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 46.

Publikation

Schilling, S.; Wasternack, C.; Demuth, H.-U.; Glutaminyl cyclases from animals and plants: a case of functionally convergent protein evolution Biol. Chem. 389, (2008) DOI: 10.1515/BC.2008.111

Several mammalian peptide hormones and proteins from plant and animal origin contain an N-terminal pyroglutamic acid (pGlu) residue. Frequently, the moiety is important in exerting biological function in either mediating interaction with receptors or stabilizing against N-terminal degradation. Glutaminyl cyclases (QCs) were isolated from different plants and animals catalyzing pGlu formation. The recent resolution of the 3D structures of Carica papaya and human QCs clearly supports different evolutionary origins of the proteins, which is also reflected by different enzymatic mechanisms. The broad substrate specificity is revealed by the heterogeneity of physiological substrates of plant and animal QCs, including cytokines, matrix proteins and pathogenesis-related proteins. Moreover, recent evidence also suggests human QC as a catalyst of pGlu formation at the N-terminus of amyloid peptides, which contribute to Alzheimer's disease. Obviously, owing to its biophysical properties, the function of pGlu in plant and animal proteins is very similar in terms of stabilizing or mediating protein and peptide structure. It is possible that the requirement for catalysis of pGlu formation under physiological conditions may have triggered separate evolution of QCs in plants and animals.
Publikation

Raffaele, S.; Vailleau, F.; Léger, A.; Joubès, J.; Miersch, O.; Huard, C.; Blée, E.; Mongrand, S.; Domergue, F.; Roby, D.; A MYB Transcription Factor Regulates Very-Long-Chain Fatty Acid Biosynthesis for Activation of the Hypersensitive Cell Death Response in Arabidopsis Plant Cell 20, 752-767, (2008) DOI: 10.1105/tpc.107.054858

Plant immune responses to pathogen attack include the hypersensitive response (HR), a form of programmed cell death occurring at invasion sites. We previously reported on Arabidopsis thaliana MYB30, a transcription factor that acts as a positive regulator of a cell death pathway conditioning the HR. Here, we show by microarray analyses of Arabidopsis plants misexpressing MYB30 that the genes encoding the four enzymes forming the acyl-coA elongase complex are putative MYB30 targets. The acyl-coA elongase complex synthesizes very-long-chain fatty acids (VLCFAs), and the accumulation of extracellular VLCFA-derived metabolites (leaf epidermal wax components) was affected in MYB30 knockout mutant and overexpressing lines. In the same lines, a lipid extraction procedure allowing high recovery of sphingolipids revealed changes in VLCFA contents that were amplified in response to inoculation. Finally, the exacerbated HR phenotype of MYB30-overexpressing lines was altered by the loss of function of the acyl-ACP thioesterase FATB, which causes severe defects in the supply of fatty acids for VLCFA biosynthesis. Based on these findings, we propose a model in which MYB30 modulates HR via VLCFAs by themselves, or VLCFA derivatives, as cell death messengers in plants.
Publikation

Miersch, O.; Neumerkel, J.; Dippe, M.; Stenzel, I.; Wasternack, C.; Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling New Phytol. 177, 114-127, (2008) DOI: 10.1111/j.1469-8137.2007.02252.x

In potato 12‐hydroxyjasmonic acid (12‐OH‐JA) is a tuber‐inducing compound. Here, it is demonstrated that 12‐OH‐JA, as well as its sulfated and glucosylated derivatives, are constituents of various organs of many plant species. All accumulate differentially and usually to much higher concentrations than jasmonic acid (JA).In wounded tomato leaves, 12‐OH‐JA and its sulfated, as well as glucosylated, derivative accumulate after JA, and their diminished accumulation in wounded leaves of the JA‐deficient mutants spr2 and acx1 and also a JA‐deficient 35S::AOCantisense line suggest their JA‐dependent formation.To elucidate how signaling properties of JA/JAME (jasmonic acid methyl ester) are affected by hydroxylation and sulfation, germination and root growth were recorded in the presence of the different jasmonates, indicating that 12‐OH‐JA and 12‐hydroxyjasmonic acid sulfate (12‐HSO4‐JA) were not bioactive. Expression analyses for 29 genes showed that expression of wound‐inducible genes such as those coding for PROTEINASE INHIBITOR2, POLYPHENOL OXIDASE, THREONINE DEAMINASE or ARGINASE was induced by JAME and less induced or even down‐regulated by 12‐OH‐JA and 12‐HSO4‐JA. Almost all genes coding for enzymes in JA biosynthesis were up‐regulated by JAME but down‐regulated by 12‐OH‐JA and 12‐HSO4‐JA.The data suggest that wound‐induced metabolic conversion of JA/JAME into 12‐OH‐JA alters expression pattern of genes including a switch off in JA signaling for a subset of genes.
Publikation

Lange, P. R.; Geserick, C.; Tischendorf, G.; Zrenner, R.; Functions of Chloroplastic Adenylate Kinases in Arabidopsis Plant Physiol. 146, 492-504, (2008) DOI: 10.1104/pp.107.114702

Adenosine monophosphate kinase (AMK; adenylate kinase) catalyses the reversible formation of ADP by the transfer of one phosphate group from ATP to AMP, thus equilibrating adenylates. The Arabidopsis (Arabidopsis thaliana) genome contains 10 genes with an adenylate/cytidylate kinase signature; seven of these are identified as putative adenylate kinases. Encoded proteins of at least two members of this Arabidopsis adenylate kinase gene family are targeted to plastids. However, when the individual genes are disrupted, the phenotypes of both mutants are strikingly different. Although absence of AMK2 causes only 30% reduction of total adenylate kinase activity in leaves, there is loss of chloroplast integrity leading to small, pale-looking plantlets from embryo to seedling development. In contrast, no phenotype for disruption of the second plastid adenylate kinase was found. From this analysis, we conclude that AMK2 is the major activity for equilibration of adenylates and de novo synthesis of ADP in the plastid stroma.
Publikation

Kienow, L.; Schneider, K.; Bartsch, M.; Stuible, H.-P.; Weng, H.; Miersch, O.; Wasternack, C.; Kombrink, E.; Jasmonates meet fatty acids: functional analysis of a new acyl-coenzyme A synthetase family from Arabidopsis thaliana J. Exp. Bot. 59, 403-419, (2008) DOI: 10.1093/jxb/erm325

Arabidopsis thaliana contains a large number of genes encoding carboxylic acid-activating enzymes, including long-chain fatty acyl-CoA synthetase (LACS), 4-coumarate:CoA ligases (4CL), and proteins closely related to 4CLs with unknown activities. The function of these 4CL-like proteins was systematically explored by applying an extensive substrate screen, and it was uncovered that activation of fatty acids is the common feature of all active members of this protein family, thereby defining a new group of fatty acyl-CoA synthetase, which is distinct from the known LACS family. Significantly, four family members also displayed activity towards different biosynthetic precursors of jasmonic acid (JA), including 12-oxo-phytodienoic acid (OPDA), dinor-OPDA, 3-oxo-2(2′-[Z]-pentenyl)cyclopentane-1-octanoic acid (OPC-8), and OPC-6. Detailed analysis of in vitro properties uncovered significant differences in substrate specificity for individual enzymes, but only one protein (At1g20510) showed OPC-8:CoA ligase activity. Its in vivo function was analysed by transcript and jasmonate profiling of Arabidopsis insertion mutants for the gene. OPC-8:CoA ligase expression was activated in response to wounding or infection in the wild type but was undetectable in the mutants, which also exhibited OPC-8 accumulation and reduced levels of JA. In addition, the developmental, tissue- and cell-type specific expression pattern of the gene, and regulatory properties of its promoter were monitored by analysing promoter::GUS reporter lines. Collectively, the results demonstrate that OPC-8:CoA ligase catalyses an essential step in JA biosynthesis by initiating the β-oxidative chain shortening of the carboxylic acid side chain of its precursors, and, in accordance with this function, the protein is localized in peroxisomes.
Publikation

Jindaprasert, A.; Springob, K.; Schmidt, J.; De-Eknamkul, W.; Kutchan, T. M.; Pyrone polyketides synthesized by a type III polyketide synthase from Drosophyllum lusitanicum Phytochemistry 69, 3043-3053, (2008) DOI: 10.1016/j.phytochem.2008.03.013

To isolate cDNAs involved in the biosynthesis of acetate-derived naphthoquinones in Drosophyllum lusitanicum, an expressed sequence tag analysis was performed. RNA from callus cultures was used to create a cDNA library from which 2004 expressed sequence tags were generated. One cDNA with similarity to known type III polyketide synthases was isolated as full-length sequence and termed DluHKS. The translated polypeptide sequence of DluHKS showed 51–67% identity with other plant type III PKSs. Recombinant DluHKS expressed in Escherichia coli accepted acetyl-coenzyme A (CoA) as starter and carried out sequential decarboxylative condensations with malonyl-CoA yielding α-pyrones from three to six acetate units. However, naphthalenes, the expected products, were not isolated. Since the main compound produced by DluHKS is a hexaketide α-pyrone, and the naphthoquinones in D. lusitanicum are composed of six acetate units, we propose that the enzyme provides the backbone of these secondary metabolites. An involvement of accessory proteins in this biosynthetic pathway is discussed.
Publikation

Iglesias, N. G.; Gago-Zachert, S. P.; Robledo, G.; Costa, N.; Plata, M. I.; Vera, O.; Grau, O.; Semorile, L. C.; Population structure of Citrus tristeza virus from field Argentinean isolates Virus Genes 36, 199-207, (2008) DOI: 10.1007/s11262-007-0169-x

We studied the genetic variability of three genomic regions (p23, p25 and p27 genes) from 11 field Citrus tristeza virus isolates from the two main citrus growing areas of Argentina, a country where the most efficient vector of the virus, Toxoptera citricida, is present for decades. The pathogenicity of the isolates was determinated by biological indexing, single-strand conformation polymorphism analysis showed that most isolates contained high intra-isolate variability. Divergent sequence variants were detected in some isolates, suggesting re-infections of the field plants. Phylogenetic analysis of the predominant sequence variants of each isolate revealed similar grouping of isolates for genes p25 and p27. The analysis of p23 showed two groups contained the severe isolates. Our results showed a high intra-isolate sequence variability suggesting that re-infections could contribute to the observed variability and that the host can play an important role in the selection of the sequence variants present in these isolates.
Publikation

Gao, X.; Stumpe, M.; Feussner, I.; Kolomiets, M.; A novel plastidial lipoxygenase of maize (Zea mays) ZmLOX6 encodes for a fatty acid hydroperoxide lyase and is uniquely regulated by phytohormones and pathogen infection Planta 227, 491-503, (2008) DOI: 10.1007/s00425-007-0634-8

Lipoxygenases (LOXs) are members of a large enzyme family that catalyze oxygenation of free polyunsaturated fatty acids into diverse hydroperoxide compounds, collectively called oxylipins. Although LOXs have been well studied in dicot species, reports of the genes encoding these enzymes are scarce for monocots, especially maize. Herein, we reported the cloning, characterization and molecular functional analysis of a novel maize LOX gene, ZmLOX6. The ZmLOX6 nucleotide sequence encodes a deduced translation product of 892 amino acids. Phylogenetic analysis showed that ZmLOX6 is distantly related to previously reported 9- or 13-LOXs from maize and other plant species, including rice and Arabidopsis. Although sequence prediction suggested cytoplasmic localization of this protein, ZmLOX6 protein has been reportedly isolated from mesophyll cell chloroplasts, emphasizing the unique features of this protein. Plastidial localization was confirmed by chloroplast uptake experiments with the in vitro translated protein. Analysis of recombinant protein revealed that ZmLOX6 has lost fatty acid hydroperoxide forming activity but 13-LOX-derived fatty acid hydroperoxides were cleaved into odd-chain ω-oxo fatty acids and as yet not identified C5-compound. In line with its reported abundance in mesophyll cells, ZmLOX6 was predominantly expressed in leaf tissue. Northern blot analysis demonstrated that ZmLOX6 was induced by jasmonic acid, but repressed by abscisic acid, salicylic acid and ethylene and was not responsive to wounding or insects. Further, this gene was strongly induced by the fungal pathogen Cochliobolus carbonum during compatible interactions, suggesting that ZmLOX6 may contribute to susceptibility to this pathogen. The potential involvement of ZmLOX6 in maize interactions with pathogens is discussed.
Publikation

Floß, D. S.; Hause, B.; Lange, P. R.; Küster, H.; Strack, D.; Walter, M. H.; Knock-down of the MEP pathway isogene 1-deoxy-d-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes Plant J. 56, 86-100, (2008) DOI: 10.1111/j.1365-313X.2008.03575.x

The first step of the plastidial methylerythritol phosphate (MEP) pathway is catalyzed by two isoforms of 1‐deoxy‐d‐ xylulose 5‐phosphate synthase (DXS1 and DXS2). In Medicago truncatula , MtDXS1 and MtDXS2 genes exhibit completely different expression patterns. Most prominently, colonization by arbuscular mycorrhizal (AM) fungi induces the accumulation of certain apocarotenoids (cyclohexenone and mycorradicin derivatives) correlated with the expression of MtDXS2 but not of MtDXS1. To prove a distinct function of DXS2, a selective RNAi approach on MtDXS2 expression was performed in transgenic hairy roots of M. truncatula. Repression of MtDXS2 consistently led to reduced transcript levels in mycorrhizal roots, and to a concomitant reduction of AM‐induced apocarotenoid accumulation. The transcript levels of MtDXS1 remained unaltered in RNAi plants, and no phenotypical changes in non‐AM plants were observed. Late stages of the AM symbiosis were adversely affected, but only upon strong repression with residual MtDXS2‐1 transcript levels remaining below approximately 10%. This condition resulted in a strong decrease in the transcript levels of MtPT4 , an AM‐specific plant phosphate transporter gene, and in a multitude of other AM‐induced plant marker genes, as shown by transcriptome analysis. This was accompanied by an increased proportion of degenerating and dead arbuscules at the expense of mature ones. The data reveal a requirement for DXS2‐dependent MEP pathway‐based isoprenoid products to sustain mycorrhizal functionality at later stages of the symbiosis. They further validate the concept of a distinct role for DXS2 in secondary metabolism, and offer a novel tool to selectively manipulate the levels of secondary isoprenoids by targeting their precursor supply.
Publikation

Fellenberg, C.; Milkowski, C.; Hause, B.; Lange, P.-R.; Böttcher, C.; Schmidt, J.; Vogt, T.; Tapetum-specific location of a cation-dependent O-methyltransferase in Arabidopsis thaliana Plant J. 56, 132-145, (2008) DOI: 10.1111/j.1365-313X.2008.03576.x

Cation‐ and S ‐adenosyl‐l ‐methionine (AdoMet)‐dependent plant natural product methyltransferases are referred to as CCoAOMTs because of their preferred substrate, caffeoyl coenzyme A (CCoA). The enzymes are encoded by a small family of genes, some of which with a proven role in lignin monomer biosynthesis. In Arabidopsis thaliana individual members of this gene family are temporally and spatially regulated. The gene At1g67990 is specifically expressed in flower buds, and is not detected in any other organ, such as roots, leaves or stems. Several lines of evidence indicate that the At1g67990 transcript is located in the flower buds, whereas the corresponding CCoAOMT‐like protein, termed AtTSM1, is located exclusively in the tapetum of developing stamen. Flowers of At1g67990 RNAi‐suppressed plants are characterized by a distinct flower chemotype with severely reduced levels of the N  ′,N  ′′‐ bis‐(5‐hydroxyferuloyl)‐N  ′′′‐sinapoylspermidine compensated for by N1 ,N5 ,N10 ‐tris‐(5‐hydroxyferuloyl)spermidine derivative, which is characterized by the lack of a single methyl group in the sinapoyl moiety. This severe change is consistent with the observed product profile of AtTSM1 for aromatic phenylpropanoids. Heterologous expression of the recombinant protein shows the highest activity towards a series of caffeic acid esters, but 5‐hydroxyferuloyl spermidine conjugates are also accepted substrates. The in vitro substrate specificity and the in vivo RNAi‐mediated suppression data of the corresponding gene suggest a role of this cation‐dependent CCoAOMT‐like protein in the stamen/pollen development of A. thaliana .
IPB Mainnav Search