zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Zeige Ergebnisse 1 bis 3 von 3.

Publikation

Kramell, R.; Miersch, O.; Atzorn, R.; Parthier, B.; Wasternack, C.; Octadecanoid-Derived Alteration of Gene Expression and the “Oxylipin Signature” in Stressed Barley Leaves. Implications for Different Signaling Pathways Plant Physiol. 123, 177-188, (2000) DOI: 10.1104/pp.123.1.177

Stress-induced gene expression in barley (Hordeum vulgare cv Salome) leaves has been correlated with temporally changing levels of octadecanoids and jasmonates, quantified by means of gas chromatography/mass spectrometry-single ion monitoring. Application of sorbitol-induced stress led to a low and transient rise of jasmonic acid (JA), its precursor 12-oxophytodienoic acid (OPDA), and the methyl esters JAME and OPDAME, respectively, followed by a large increase in their levels. JA and JAME peaked between 12 and 16 h, about 4 h before OPDA and OPDAME. However, OPDA accumulated up to a 2.5-fold higher level than the other compounds. Dihomo-JA and 9,13-didehydro-OPDA were identified as minor components. Kinetic analyses revealed that a transient threshold of jasmonates or octadecanoids is necessary and sufficient to initiate JA-responsive gene expression. Although OPDA and OPDAME applied exogenously were metabolized to JA in considerable amounts, both of them can induce gene expression, as evidenced by those genes that did not respond to endogenously formed JA. Also, coronatine induces JA-responsive genes independently from endogenous JA. Application of deuterated JA showed that endogenous synthesis of JA is not induced by JA treatment. The data are discussed in terms of distinct signaling pathways.
Publikation

Abel, S.; Nürnberger, T.; Ahnert, V.; Krauss, G.-J.; Glund, K.; Induction of an Extracellular Cyclic Nucleotide Phosphodiesterase as an Accessory Ribonucleolytic Activity during Phosphate Starvation of Cultured Tomato Cells Plant Physiol. 122, 543-552, (2000) DOI: 10.1104/pp.122.2.543

During growth under conditions of phosphate limitation, suspension-cultured cells of tomato (Lycopersicon esculentum Mill.) secrete phosphodiesterase activity in a similar fashion to phosphate starvation-inducible ribonuclease (RNase LE), a cyclizing endoribonuclease that generates 2′:3′-cyclic nucleoside monophosphates (NMP) as its major monomeric products (T. Nürnberger, S. Abel, W. Jost, K. Glund [1990] Plant Physiol 92: 970–976). Tomato extracellular phosphodiesterase was purified to homogeneity from the spent culture medium of phosphate-starved cells and was characterized as a cyclic nucleotide phosphodiesterase. The purified enzyme has a molecular mass of 70 kD, a pH optimum of 6.2, and an isoelectric point of 8.1. The phosphodiesterase preparation is free of any detectable deoxyribonuclease, ribonuclease, and nucleotidase activity. Tomato extracellular phosphodiesterase is insensitive to EDTA and hydrolyzes with no apparent base specificity 2′:3′-cyclic NMP to 3′-NMP and the 3′:5′-cyclic isomers to a mixture of 3′-NMP and 5′-NMP. Specific activities of the enzyme are 2-fold higher for 2′:3′-cyclic NMP than for 3′:5′-cyclic isomers. Analysis of monomeric products of sequential RNA hydrolysis with purified RNase LE, purified extracellular phosphodiesterase, and cleared −Pi culture medium as a source of 3′-nucleotidase activity indicates that cyclic nucleotide phosphodiesterase functions as an accessory ribonucleolytic activity that effectively hydrolyzes primary products of RNase LE to substrates for phosphate-starvation-inducible phosphomonoesterases. Biosynthetical labeling of cyclic nucleotide phopshodiesterase upon phosphate starvation suggests de novo synthesis and secretion of a set of nucleolytic enzymes for scavenging phosphate from extracellular RNA substrates.
Publikation

Herde, O.; Atzorn, R.; Fisahn, J.; Wasternack, C.; Willmitzer, L.; Pena-Cortes, H.; Localized Wounding by Heat Initiates the Accumulation of Proteinase Inhibitor II in Abscisic Acid-Deficient Plants by Triggering Jasmonic Acid Biosynthesis Plant Physiol. 112, 853-860, (1996) DOI: 10.1104/pp.112.2.853

To test whether the response to electrical current and heat treatment is due to the same signaling pathway that mediates mechanical wounding, we analyzed the effect of electric-current application and localized burning on proteinase inhibitor II (Pin2) gene expression in both wild-type and abscisic acid (ABA)-deficient tomato (Lycopersicon esculentum Mill.) and potato (Solanum phureja) plants. Electric-current application and localized burning led to the accumulation of Pin2 mRNA in potato and tomato wild-type plants. Among the treatments tested, only localized burning of the leaves led to an accumulation of Pin2 mRNA in the ABA-deficient plants. Electric-current application, like mechanical injury, was able to initiate ABA and jasmonic acid (JA) accumulation in wild-type but not in ABA-deficient plants. In contrast, heat treatment led to an accumulation of JA in both wild-type and ABA-deficient plants. Inhibition of JA biosynthesis by aspirin blocked the heat-induced Pin2 gene expression in tomato wild-type leaves. These results suggest that electric current, similar to mechanical wounding, requires the presence of ABA to induce Pin2 gene expression. Conversely, burning of the leaves activates Pin2 gene expression by directly triggering the biosynthesis of JA by an alternative pathway that is independent of endogenous ABA levels.
IPB Mainnav Search