zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Zeige Ergebnisse 1 bis 4 von 4.

Publikation

Abel, S.; Nguyen, M. D.; Theologis, A.; The PS-IAA4/5-like Family of Early Auxin-inducible mRNAs in Arabidopsis thaliana J. Mol. Biol. 251, 533-549, (1995) DOI: 10.1006/jmbi.1995.0454

The plant hormone auxin transcriptionally activates early genes. We have isolated a 14-member family of DNA sequences complementary to indoleacetic acid (IAA)-inducible transcripts inArabidopsis thaliana. The corresponding genes, IAA1 and IAA14, are homologs of PS-1AA4/5 and PS-IAA6 from pea, AUX22 and AUX28 from soybean, ARG3 and ARG4from mungbean, and AtAux2-11 and AtAux2-27 from Arabidopsis. The members of the family are differentially expressed in mature Arabidopsis plants. Characterization of IAA gene expression in etiolated seedlings demonstrates specificity for auxin inducibility. The response of most family members to IAA is rapid (within 4 to 30 minutes) and insensitive to cyclohexamide. Cyclohexamide alone induces all the early genes. Auxin-induction of two late genes, IAA7 and IAA8, is inhibited by cyclohexamide, indicating requirement of protein synthesis for their activation. All IAA genes display a biphasic dose response that is optimal at 10 μM IAA. However, individual genes respond differentially between 10 nM and 5μM IAA. Expression of all genes is defective in the Arabidopsis auxin-resistant mutant lines axr1, axr2, and aux1.The encoded polypeptides share four conserved domains, and seven invariant residues in the intervening regions. The spaces vary considerably in length, rendering the calculated molecular mass of IAA proteins to range from 19 kDa to 36 kDa. Overall sequence identity between members of the family is highly variable (36 to 87%). Their most significant structural features are functional nuclear transport signals, and a putative βαα-fold whose modeled three dimensional structure appears to be compatible with the prokaryotic β-ribbon DNA recognition motif. The data suggest that auxin induces in a differential and hierarchical fashion a large family of early genes that encode a structurally diverse class of nuclear proteins. These proteins are proposed to mediate tissue-specific and cell-type restricted responses to the hormone during plant growth and development.
Publikation

Abel, S.; Theologis, A.; A polymorphic bipartite motif signals nuclear targeting of early auxin-inducible proteins related to PS-IAA4 from pea (Pisum sativum) Plant J. 8, 87-96, (1995) DOI: 10.1046/j.1365-313X.1995.08010087.x

The plant hormone, indoleacetic acid (IAA), transcriptionally activates two early genes in pea, PS‐IAA4/5 and PS‐IAA6 , that encode short‐lived nuclear proteins. The identification of the nuclear localization signals (NLS) in PS‐IAA4 and PS‐IAA6 using progressive deletion analysis and site‐directed mutagenesis is reported. A C‐terminal SV40‐type NLS is sufficient to direct the β‐glucuronidase reporter to the nucleus of transiently transformed tobacco protoplasts, but is dispensible for nuclear localization of both proteins. The dominant and essential NLS in PS‐IAA4 and PS‐IAA6 overlap with a bipartite basic motif which is polymorphic and conserved in related proteins from other plant species, having the consensus sequence (KKNEK)KR‐X(24–71)‐(RSXRK)/(RK/RK). Both basic elements of this motif in PS‐IAA4, (KR‐X41‐RSYRK), function interdependently as a bipartite NLS. However, in PS‐IAA6 (KKNEKKR‐X36‐RKK) the upstream element of the corresponding motif contains additional basic residues which allow its autonomous function as an SV40‐type monopartite NLS. The spacer‐length polymorphism, X(24–70), in respective bipartite NLS peptides of several PS‐IAA4‐like proteins from Arabidopsis thaliana does not affect nuclear targeting function. The structural and functional variation of the bipartite basic motif in PS‐IAA4‐like proteins supports the proposed integrated consensus of NLS.
Publikation

Abel, S.; Theologis, A.; Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression Plant J. 5, 421-427, (1994) DOI: 10.1111/j.1365-313X.1994.00421.x

An improved protocol is reported to isolate and transiently transform mesophyll protoplasts of Arabidopsis thaliana. Transfected leaf protoplasts support high levels of expression of the bacterial reporter gene coding for β‐glucuronidase (GUS), under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Transient expression of GUS activity was monitored spectrophotometrically and reached a maximum between 18 and 48 h after polyethylene glycol (PEG)‐mediated DNA uptake. Histochemical staining for GUS activity revealed reproducible transformation frequencies between 40 and 60%, based on the number of protoplasts survived. To demonstrate the applicability of the transient expression system, the subcellular localization of GUS proteins tagged with different nuclear polypeptides was studied in transfected mesophyll protoplasts, revealing nuclear compartmentalization of the chimeric GUS enzymes. Furthermore, Arabidopsis mesophyll protoplasts support auxin‐mediated induction of chloramphenicol acetyl‐transferase (CAT) activity when transfected with a transcriptional fusion between the CAT reporter gene and the early auxin‐inducible PS‐IAA4/5 promoter. Hence, the method allows in vivo analysis of promoter activity and subcellular localization of fusion proteins in a homologous transformation system.
Publikation

Abel, S.; Oeller, P. W.; Theologis, A.; Early auxin-induced genes encode short-lived nuclear proteins. Proc. Natl. Acad. Sci. U.S.A. 91, 326-330, (1994) DOI: 10.1073/pnas.91.1.326

The plant growth hormone indoleacetic acid (IAA) transcriptionally activates gene expression in plants. Some of the genes whose expression is induced by IAA encode a family of proteins in pea (PS-IAA4 and PS-IAA6) and Arabidopsis (IAA1 and IAA2) that contain putative nuclear localization signals that direct a beta-glucuronidase reporter protein into the nucleus. Pulse-chase and immunoprecipitation experiments have defined the t1/2 of the PS-IAA4 and PS-IAA6 proteins to be 8 and 6 min, respectively. Their most prominent feature is the presence of a beta alpha alpha motif similar to the beta-sheet DNA-binding domain found in prokaryotic repressors of the Arc family. Based on these data, we suggest that plant tissues express short-lived nuclear proteins as a primary response to IAA. We propose that these proteins act as activators or repressors of genes responsible for mediating the various auxin responses.
IPB Mainnav Search