zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 32.

Publikation

Levy, M.; Wang, Q.; Kaspi, R.; Parrella, M. P.; Abel, S.; Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense Plant J. 43, 79-96, (2005) DOI: 10.1111/j.1365-313X.2005.02435.x

Glucosinolates are a class of secondary metabolites with important roles in plant defense and human nutrition. To uncover regulatory mechanisms of glucosinolate production, we screened Arabidopsis thaliana T‐DNA activation‐tagged lines and identified a high‐glucosinolate mutant caused by overexpression of IQD1 (At3g09710). A series of gain‐ and loss‐of‐function IQD1 alleles in different accessions correlates with increased and decreased glucosinolate levels, respectively. IQD1 encodes a novel protein that contains putative nuclear localization signals and several motifs known to mediate calmodulin binding, which are arranged in a plant‐specific segment of 67 amino acids, called the IQ67 domain. We demonstrate that an IQD1‐GFP fusion protein is targeted to the cell nucleus and that recombinant IQD1 binds to calmodulin in a Ca2+‐dependent fashion. Analysis of steady‐state messenger RNA levels of glucosinolate pathway genes indicates that IQD1 affects expression of multiple genes with roles in glucosinolate metabolism. Histochemical analysis of tissue‐specific IQD1 ::GUS expression reveals IQD1 promoter activity mainly in vascular tissues of all organs, consistent with the expression patterns of several glucosinolate‐related genes. Interestingly, overexpression of IQD1 reduces insect herbivory, which we demonstrated in dual‐choice assays with the generalist phloem‐feeding green peach aphid (Myzus persicae ), and in weight‐gain assays with the cabbage looper (Trichoplusia ni ), a generalist‐chewing lepidopteran. As IQD1 is induced by mechanical stimuli, we propose IQD1 to be novel nuclear factor that integrates intracellular Ca2+ signals to fine‐tune glucosinolate accumulation in response to biotic challenge.
Publikation

Isayenkov, S.; Mrosk, C.; Stenzel, I.; Strack, D.; Hause, B.; Suppression of Allene Oxide Cyclase in Hairy Roots of Medicago truncatula Reduces Jasmonate Levels and the Degree of Mycorrhization with Glomus intraradices Plant Physiol. 139, 1401-1410, (2005) DOI: 10.1104/pp.105.069054

During the symbiotic interaction between Medicago truncatula and the arbuscular mycorrhizal (AM) fungus Glomus intraradices, an endogenous increase in jasmonic acid (JA) occurs. Two full-length cDNAs coding for the JA-biosynthetic enzyme allene oxide cyclase (AOC) from M. truncatula, designated as MtAOC1 and MtAOC2, were cloned and characterized. The AOC protein was localized in plastids and found to occur constitutively in all vascular tissues of M. truncatula. In leaves and roots, MtAOCs are expressed upon JA application. Enhanced expression was also observed during mycorrhization with G. intraradices. A partial suppression of MtAOC expression was achieved in roots following transformation with Agrobacterium rhizogenes harboring the MtAOC1 cDNA in the antisense direction under control of the cauliflower mosaic virus 35S promoter. In comparison to samples transformed with 35S∷uidA, roots with suppressed MtAOC1 expression exhibited lower JA levels and a remarkable delay in the process of colonization with G. intraradices. Both the mycorrhization rate, quantified by fungal rRNA, and the arbuscule formation, analyzed by the expression level of the AM-specific gene MtPT4, were affected. Staining of fungal material in roots with suppressed MtAOC1 revealed a decreased number of arbuscules, but these did not exhibit an altered structure. Our results indicate a crucial role for JA in the establishment of AM symbiosis.
Publikation

Gerhardt, B.; Fischer, K.; Balkenhohl, T. J.; Pohnert, G.; Kühn, H.; Wasternack, C.; Feussner, I.; Lipoxygenase-mediated metabolism of storage lipids in germinating sunflower cotyledons and β-oxidation of (9Z,11E,13S)-13-hydroxy-octadeca-9,11-dienoic acid by the cotyledonary glyoxysomes Planta 220, 919-930, (2005) DOI: 10.1007/s00425-004-1408-1

During the early stages of germination, a lipid-body lipoxygenase is expressed in the cotyledons of sunflowers (Helianthus annuus L.). In order to obtain evidence for the in vivo activity of this enzyme during germination, we analyzed the lipoxygenase-dependent metabolism of polyunsaturated fatty acids esterified in the storage lipids. For this purpose, lipid bodies were isolated from etiolated sunflower cotyledons at different stages of germination, and the storage triacylglycerols were analyzed for oxygenated derivatives. During the time course of germination the amount of oxygenated storage lipids was strongly augmented, and we detected triacylglycerols containing one, two or three residues of (9Z,11E,13S)-13-hydro(pero)xy-octadeca-9,11-dienoic acid. Glyoxysomes from etiolated sunflower cotyledons converted (9Z,11E,13S)-13-hydroxy-octadeca-9,11-dienoic acid to (9Z,11E)-13-oxo-octadeca-9,11-dienoic acid via an NADH-dependent dehydrogenase reaction. Both oxygenated fatty acid derivatives were activated to the corresponding CoA esters and subsequently metabolized to compounds of shorter chain length. Cofactor requirement and formation of acetyl-CoA indicate degradation via β-oxidation. However, β-oxidation only proceeded for two consecutive cycles, leading to accumulation of a medium-chain metabolite carrying an oxo group at C-9, equivalent to C-13 of the parent (9Z,11E,13S)-13-hydroxy-octadeca-9,11-dienoic acid. Short-chain β-oxidation intermediates were not detected during incubation. Similar results were obtained when 13-hydroxy octadecanoic acid was used as β-oxidation substrate. On the other hand, the degradation of (9Z,11E)-octadeca-9,11-dienoic acid was accompanied by the appearance of short-chain β-oxidation intermediates in the reaction mixture. The results suggest that the hydroxyl/oxo group at C-13 of lipoxygenase-derived fatty acids forms a barrier to continuous β-oxidation by glyoxysomes.
Publikation

Gago, S.; De la Peña, M.; Flores, R.; A kissing-loop interaction in a hammerhead viroid RNA critical for its in vitro folding and in vivo viability RNA 11, 1073-1083, (2005) DOI: 10.1261/rna.2230605

Chrysanthemum chlorotic mottle viroid (CChMVd) RNA (398–401 nucleotides) can form hammerhead ribozymes that play a functional role in its replication through a rolling-circle mechanism. In contrast to most other viroids, which adopt rod-like or quasi-rod-like secondary structures of minimal free energy, the computer-predicted conformations of CChMVd and Peach latent mosaic viroid (PLMVd) RNAs are branched. Moreover, the covariations found in a number of natural CChMVd variants support that the same or a closely related conformation exists in vivo. Here we report that the CChMVd natural variability also supports that the branched conformation is additionally stabilized by a kissing-loop interaction resembling another one proposed in PLMVd from in vitro assays. Moreover, site-directed mutagenesis combined with bioassays and progeny analysis showed that: (1) single CChMVd mutants affecting the kissing loops had low or no infectivity at all, whereas infectivity was recovered in double mutants restoring the interaction; (2) mutations affecting the structure of the regions adjacent to the kissing loops reverted to wild type or led to rearranged stems, also supporting their interaction; and (3) the interchange between 4 nucleotides of each of the two kissing loops generated a viable CChMVd variant with eight mutations. PAGE analysis under denaturing and nondenaturing conditions revealed that the kissing-loop interaction determines proper in vitro folding of CChMVd RNA. Preservation of a similar kissing-loop interaction in two hammerhead viroids with an overall low sequence similarity suggests that it facilitates in vivo the adoption and stabilization of a compact folding critical for viroid viability.
Publikation

Fortes, A. M.; Miersch, O.; Lange, P. R.; Malhó, R.; Testillano, P. S.; Risueño, M. d. C.; Wasternack, C.; Pais, M. S.; Expression of Allene Oxide Cyclase and Accumulation of Jasmonates during Organogenic Nodule Formation from Hop (Humulus lupulus var. Nugget) Internodes Plant Cell Physiol. 46, 1713-1723, (2005) DOI: 10.1093/pcp/pci187

A crucial step in the biosynthesis of jasmonic acid (JA) is the formation of its stereoisomeric precursor, cis-(+)-12-oxophytodienoic acid (OPDA), which is catalyzed by allene oxide cyclase (AOC, EC 5.3.99.6). A cDNA of AOC was isolated from Humulus lupulus var. Nugget. The ORF of 765 bp encodes a 255 amino acid protein, which carries a putative chloroplast targeting sequence. The recombinant protein without its putative chloroplast target sequence showed significant AOC activity. Previously we demonstrated that wounding induces organogenic nodule formation in hop. Here we show that the AOC transcript level increases in response to wounding of internodes, peaking between 2 and 4 h after wounding. In addition, Western blot analysis showed elevated levels of AOC peaking 24 h after internode inoculation. The AOC increase was accompanied by increased JA levels 24 h after wounding, whereas OPDA had already reached its highest level after 12 h. AOC is mostly present in the vascular bundles of inoculated internodes. During prenodule and nodule formation, AOC levels were still high. JA and OPDA levels decreased down to 10 and 118 pmol (g FW)–1, respectively, during nodule formation, but increased during plantlet regeneration. Double immunolocalization analysis of AOC and Rubisco in connection with lugol staining showed that AOC is present in amyloplasts of prenodular cells and in the chloroplasts of vacuolated nodular cells, whereas meristematic cells accumulated little AOC. These data suggest a role of AOC and jasmonates in organogenic nodule formation and plantlet regeneration from these nodules.
Publikation

Ebeler, S. E.; Dingley, K. H.; Ubick, E.; Abel, S.; Mitchell, A. E.; Burns, S. A.; Steinberg, F. M.; Clifford, A. J.; Animal Models and Analytical Approaches for Understanding the Relationships Between Wine and Cancer Drugs Exp. Clin. Res. 31, 19-27, (2005)

We used two approaches for studying the relationships between wine consumption, wine composition and cancer In the first approach, a transgenic mouse model of human neurofibromatosis, combined with the use of well-defined, chemically purified diets, showed that red wine contains nonalcoholic components that can delay tumor onset. In additional studies, catechin, the main monomeric polyphenol of red wine, delayed tumor onset in this mouse model in a positive, linear relationship when incorporated into the diet at levels of 0.5-4 mmol/kg diet. In the second approach, low doses of the chemical carcinogen 2-amino-1-methyl-6-phenylimidazo(4, 5-b)pyridine (PhlP) were administered to rats, and formation of DNA adducts was evaluated by accelerator mass spectrometry. Consumption of red wine solids (the residue from red wine remaining after removal of alcohol and water) and the wine polyphenol quercetin did not influence PhlP-DNA adduct levels or induce liver enzymes (glutathione-S-transferase and quinone reductase). However, quercetin did alter distribution of PhlP in the rat tissues compared to control animals and animals fed other potential dietary chemopreventive agents, including phenylethyl isothiocyanate and sulforaphane. These studies demonstrate the feasibility of these approaches for studying the chemopreventive potential of dietary components at physiologic levels in
Publikation

Durgbanshi, A.; Arbona, V.; Pozo, O.; Miersch, O.; Sancho, J. V.; Gómez-Cadenas, A.; Simultaneous Determination of Multiple Phytohormones in Plant Extracts by Liquid Chromatography−Electrospray Tandem Mass Spectrometry J. Agr. Food Chem. 53, 8437-8442, (2005) DOI: 10.1021/jf050884b

A rapid multiresidue method to quantify three different classes of plant hormones has been developed. The reduced concentrations of these metabolites in real samples with complex matrixes require sensitive techniques for their quantification in small amounts of plant tissue. The method described combines high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Deuterium-labeled standards were added prior to sample extraction to achieve an accurate quantification of abscisic acid, indole-3-acetic acid, and jasmonic acid in a single run. A simple method of extraction and purification involving only centrifugation, a partition against diethyl ether, and filtration was developed and the analytical method validated in four different plant tissues, citrus leaves, papaya roots, barley seedlings, and barley immature embryos. This method represents a clear advantage because it extensively reduces sample preparation and total time for routine analysis of phytohormones in real plant samples.
Publikation

Danon, A.; Miersch, O.; Felix, G.; op den Camp, R. G. L.; Apel, K.; Concurrent activation of cell death-regulating signaling pathways by singlet oxygen in Arabidopsis thaliana Plant J. 41, 68-80, (2005) DOI: 10.1111/j.1365-313X.2004.02276.x

Upon a dark/light shift the conditional flu mutant of Arabidopsis starts to generate singlet oxygen (1O2), a non‐radical reactive oxygen species that is restricted to the plastid compartment. Immediately after the shift, plants stop growing and develop necrotic lesions. We have established a protoplast system, which allows detection and characterization of the death response in flu induced by the release of 1O2. Vitamin B6 that quenches 1O2 in fungi was able to protect flu protoplasts from cell death. Blocking ethylene production was sufficient to partially inhibit the death reaction. Similarly, flu mutant seedlings expressing transgenic NahG were partially protected from the death provoked by the release of 1O2, indicating a requirement for salicylic acid (SA) in this process, whereas in cells depleted of both, ethylene and SA, the extent of cell death was reduced to the wild‐type level. The flu mutant was also crossed with the jasmonic acid (JA)‐depleted mutant opr3 , and with the JA, OPDA and dinor OPDA (dnOPDA)‐depleted dde2‐2 mutant. Analysis of the resulting double mutants revealed that in contrast to the JA‐induced suppression of H2O2/superoxide‐dependent cell death reported earlier, JA promotes singlet oxygen‐mediated cell death in flu , whereas other oxylipins such as OPDA and dnOPDA antagonize this death‐inducing activity of JA.
Publikation

Cenzano, A.; Vigliocc, A.; Miersch, O.; Abdala, G.; Hydroxylated jasmonate levels during stolon to tuber transition in Solarium tuberosum L Potato Res. 48, 107, (2005) DOI: 10.1007/BF02742370

Various octadecanoids and derived compounds have been identified in potato leaves. However, information regarding jasmonate hydroxylated forms in stolons or tubers is scarce. We investigated endogenous jasmonates in stolon material ofSolarium tuberosum cv. Spunta. Stolons and incipient tubers were collected from 8 weeks old plants. The material was cut into apical regions and stolons. We identified jasmonic acid (JA), methyl jasmonate, 11-OH-JA, 12-OH-JA, 12-oxo-phytodienoic acid (OPDA) and a conjugate. The content of JA and 12OH-JA decreased in the apical region but remained high in stolons during tuberization. Thus the apical region might be a site of JAs-utilization or metabolization and stolons might supply JAs to that region. The content of 12-OH-JA was higher than that of 11-OH-JA in all stages analyzed, both in apical regions and stolons. However, these compounds showed a different time-course in the apical region: while 11-OH-JA increased, 12-OH-JA decreased. Thus, JA from leaves or roots could be transported as 12-OH-JA to the apical region, stimulating tuber formation.
Publikation

Calderon-Villalobos, L. I.; Kuhnle, C.; Dohmann, E. M.; Li, H.; Bevan, M.; Schwechheimer, C.; The Evolutionarily Conserved TOUGH Protein Is Required for Proper Development of Arabidopsis thaliana Plant Cell 17, 2473-2485, (2005) DOI: 10.1105/tpc.105.031302

In this study, we characterize the evolutionarily conserved TOUGH (TGH) protein as a novel regulator required for Arabidopsis thaliana development. We initially identified TGH as a yeast two-hybrid system interactor of the transcription initiation factor TATA-box binding protein 2. TGH has apparent orthologs in all eukaryotic model organisms with the exception of the budding yeast Saccharomyces cerevisiae. TGH contains domains with strong similarity to G-patch and SWAP domains, protein domains that are characteristic of RNA binding and processing proteins. Furthermore, TGH colocalizes with the splicing regulator SRp34 to subnuclear particles. We therefore propose that TGH plays a role in RNA binding or processing. Arabidopsis tgh mutants display developmental defects, including reduced plant height, polycotyly, and reduced vascularization. We found TGH expression to be increased in the amp1-1 mutant, which is similar to tgh mutants with respect to polycotyly and defects in vascular development. Interestingly, we observed a strong genetic interaction between TGH and AMP1 in that tgh-1 amp1-1 double mutants are extremely dwarfed and severely affected in plant development in general and vascular development in particular when compared with the single mutants.
IPB Mainnav Search